1、第四节第四节 Laplace 变换的性质变换的性质 Laplace变换的若干基本性质变换的若干基本性质 线性性质线性性质 位移性质位移性质 延迟性质延迟性质 相似性质相似性质 Laplace变换的微分性质与积分性质变换的微分性质与积分性质 微分性质微分性质 积分性质积分性质 Laplace变换的卷积定理变换的卷积定理1122220 1!(1)(),()(1)(2)()1(3)(4)cos,sin(5)()1(6)()1()()1mmktTstsTLaplacemu tu t tssu t tseskskktktsksktf tTf tf t edte 常常见见的的基基本本变变换换对对若若是是以
2、以 为为周周期期的的周周期期函函数数,则则 LLLLLLLL1、线性性质线性性质一、一、Laplace变换的若干基本性质变换的若干基本性质1212 ()()()()f tftf tftLLL1111212 ()()()()-F sF sF sF sLLL2、位移性质位移性质 (0()()Re()atef tF sasaL3、延迟性质延迟性质 (0()()()()()sf tF su tf teF s 设设,则则有有实实数数LL证明:证明:0()()()()stu tf tu tf tedt L()stf tedt ()0()x ts xf x edx 0()ssxef x edx )(sFes
3、4、相似性质相似性质01 ()()()()f tF sasf atFaa 设设,则则有有LL例例1 求下列函数的求下列函数的Laplace变换变换(1)()cos atf tekt 解:解:22cossktsk L位移性质22cos()atsaektsak L23/2(2)()tf te t 3 25 23 112 22/()ts L解解5/234s 位移性质23/25/234(2)te ts L23(3)()(1)tf tte 解:解:22121()tttLLLL23232!211(22)ssssss23231132323()()()()ttesss L231(45)(3)sss 2(4)(
4、)(1)(1)f ttu t解:解:232ts L延迟性质23211()()setu ts L45321()()sin()()tf tt etu t4321()sin()()tf tt etu tLLLL解解52421314!()sesss(6)()35(35)tf tetut解:解:3/23/23()2()2t u tss L相似性质33/22113 3(3)3 223t utssL延迟性质533/2553 3()(3()332stutes L5(1)33/2553()3()(3()332(1)stf tetutes LL例例2 求如图所示求如图所示 阶梯函数的阶梯函数的Laplace变换变
5、换解:解:0()()()()()kf tA u tu tu tnAu tk 0()()kf tAu tk LL 0kskeAs 11sAse 例例3 ()()()()tf tetu tf t 设设 为为常常数数,求求L解:解:1(),t L ()()u tu ts LL 1()()tu ts 故故L 1()()tsetu tss 从从而而L1、线性性质线性性质一、一、Laplace变换的若干基本性质变换的若干基本性质1212 ()()()()f tftf tftLLL1111212 ()()()()-F sF sF sF sLLL2、位移性质位移性质 (0()()Re()atef tF sas
6、aL3、延迟性质延迟性质 (0()()()()()sf tF su tf teF s 设设,则则有有实实数数LL4、相似性质相似性质01 ()()()()f tF sasf atFaa 设设,则则有有LL二、Laplace变换的微分性质与变换的微分性质与积分性质积分性质1、微分性质微分性质()()f tF s 若若,则则L2 ()()()()()()nnFst f tFs-tf t()LL12110 000()()()()()()()()()()nnnnnftsF sffts F ssfsff()LL-11()()f tFst L证明:证明:0()()stftft edt L0)(tdfest
7、00()()|ststf t esf t edt Re()(Re()(),stcttssc tf t eMeeMe由由Re()()0limsttscf t e 故故当当时时,0()(0)()limststtf t efsf t edt(1)0()()()ftsF sf 故故L类似易证得其他各式。类似易证得其他各式。例例4()cosLaplacef tkt 利利用用微微分分性性质质,求求的的变变换换解:解:2()sin()cosftkktftkkt ,200()()()()fts F ssff L2()s F ss由微分性质222()coscos()ftkktkktk F s 又又LLLcos(
8、)ktF s 设设L22 ()()s F ssk F s 即即,22 ()cossF sktsk 故故L例例5:2 121()ln()()sF sf tF ss ,求求L解:解:222112()111sF ssssss 由微分性质 1()()F sf tt L 1 1 11112 11tsssLLL1()()2()ttu t eu t eu tt 2()(1)u tchtt 2、积分性质、积分性质0ss11(2)()()()()()tfdF ssf tF s dsF s dst ()若若收收敛敛,则则LL()()f tF s 设设,L证明:证明:01()()ttfd ()令令,()()tf t
9、 则则,0()()()()()()()()stF sf ttssss 令令,按按照照微微分分性性质质,LLL0 ()()()tF sfdss 则则L 12()()()()ssF s dsts ()令令,L()()()sdsF s dsF sds ,1 ()()()()()()()ttsF sF sf tttt LL ()()()sf tsF s dst 即即L证毕证毕例例6:01sh12()()sin()()f ttttf tf t dt 设设,()求求,()计计算算积积分分L解解:(1)sinsin(sh)sinsin22tttteeetetttt sh2sinsin()sin ttetet
10、tt 故故LL211sin,ts 已已知知L 1 2sin sin ttetet LL221112(1)1(1)1ss由积分性质 1arctan(1)arctan(1)2|sss 22sh11121111()sin()()()sttf tdstss LL 1arctan(1)arctan(1)2ss(2)0()f t dt 00()tf t edt 0()|sf t L 01arctan(1)arctan(1)2|sss 4 1arctan1arctan(1)2例例7012sin()()sintf tf tttdtt 设设 ,()求求,()计计算算积积分分L例例8:203costed 求求L解
11、解:23 9cossts L3 costtL29dsds s 22299()ss 23 costett L2222929()()ss(积分性质)(积分性质)(位移性质)(位移性质)203costed L23 costetts L2224529()sss s 练习练习3303122122cos sinsinttttettedett ()求求,()求求()求求LLL1、线性性质线性性质一、一、Laplace变换的若干基本性质变换的若干基本性质1212 ()()()()f tftf tftLLL1111212 ()()()()-F sF sF sF sLLL2、位移性质位移性质 (0()()Re()
12、atef tF sasaL3、延迟性质延迟性质 (0()()()()()sf tF su tf teF s 设设,则则有有实实数数LL4、相似性质相似性质01 ()()()()f tF sasf atFaa 设设,则则有有LL二、Laplace变换的微分性质与变换的微分性质与积分性质积分性质1、微分性质微分性质()()f tF s 若若,则则L2 ()()()()()()nnFst f tFs-tf t()LL12110 000()()()()()()()()()()nnnnnftsF sffts F ssfsff()LL-11()()f tFst L2、积分性质、积分性质0ss11(2)()
13、()()()()tfdF ssf tF s dsF s dst ()若若收收敛敛,则则LL()()f tF s 设设,L3、拉氏卷积定理拉氏卷积定理1122()()()()f tF sftF s设设,则则LL1212()*()()()f tftF sF sL拉氏卷积定理的推广拉氏卷积定理的推广:1212()*()*()()()()nnf tftftF sF sF sL三、三、Laplace变换的卷积定理变换的卷积定理1、拉氏卷积的定义拉氏卷积的定义定义定义 121201212 ()()()()()()()()()tf tftfftdf tftf tft 称称为为函函数数和和的的拉拉氏氏卷卷积积
14、,有有时时也也记记为为。L2、拉氏卷积和傅氏卷积的关系拉氏卷积和傅氏卷积的关系1212()()()()()()()()f tftf t u tft u tLF 由于拉氏卷积和傅氏卷积本质上的一致性,与傅氏由于拉氏卷积和傅氏卷积本质上的一致性,与傅氏卷积一样,拉氏卷积也具有交换律、结合律、分配律,卷积一样,拉氏卷积也具有交换律、结合律、分配律,即:即:1221()*()()*()f tf tf tf t 123123()*()*()()*()*()f tf tf tf tf tf t 1231213()*()()()*()()*()f tf tf tf tf tf tf t3、拉氏卷积定理拉氏卷
15、积定理1122()()()()f tF sftF s设设,则则LL12121()()*()()()f tftF sF sL1212122()()()()()jjf tftFF sdj L,c Resc其其中中3、拉氏卷积定理拉氏卷积定理1122()()()()f tF sftF s设设,则则LL1212()*()()()f tftF sF sL证明:证明:12120()()()()stf tftf tft edt L 1200()()tstfftd edt 120()()stfftedt d (交换积分次序)(交换积分次序)120()()()s uffu edu d 120()()sefF s
16、 d 210()()sF sefd 12()()F sF sut (令令)拉氏卷积定理的推广拉氏卷积定理的推广:1212()*()*()()()()nnf tftftF sF sF sL例例9:(1)1 (2)sinttt 求求下下列列拉拉氏氏卷卷积积解解:02()sin()sinttttd sintt 22 01 11()=22()tttttdt t 2()()()()sinsintttt方方法法LLL2211=+1ss2211=+1ss 2211 sin=()()+1ttssLL所所以以=(0)sintt t 22 12 Laplace45()()()()sF sssf tF s ,求求其
17、其逆逆变变换换L例例10:解解:222()(2)1sF ss ,211()()()tf tef tf t ,因因此此只只要要求求出出 1111221()()()()sF sf tF ss 现现记记,L122111()sF sss按照卷积定理 1122111()sf tss L 1 122111sssLLcossintttdt 0)sin(cos 0122sinsin()ttt d ttsin21221 2()()sintttf tef tet故故11 ()()F sf t由由计计算算的的过过程程,还还可可以以利利用用留留数数定定理理,作作为为练练习习。注注:解法二解法二:222()(2)1sF
18、 ss ,1111221()()()()sF sf tF ss 现现记记 ,L211()()()tf tef tf t ,因因此此只只要要求求出出122211121()()sdF ssdss 1122(sin)()(sin)()dtsttsds LL2212111()()()sin.2tttf tef teF settL因因此此 222 144 Laplace413()()()()ssF sssf tF s ,求求其其逆逆变变换换L练习:练习:22 ()(2)3().()cos.tntt u t etu t et 例例1111 求求下下列列FourierFourier变变换换1 1FF+1)=
19、!()(nnnts解解 1 1 因因为为,L2+1-=!()()(+2)tnnnt ess则则,L22=()=()()|()s jntntt u t et es 所所以以由由FourierFourier变变换换与与LaplacLaplac变变换换的的定定义义FL+1=!(2+)nnj。2=(2)(cos3)+9stsL因因,2=(cos3)()+9stt ss 则则L2229=(+9)ss 2222=(+2)9 (cos3)()(+2)+9tsett ss L22=3()=(3)()|()coscostts jtu t ettet s 所所以以由由FourierFourier变变换换与与LaplacLaplac变变换换的的定定义义FL222=(+2)9(+2)+9jj