1、公众号码:王校长资源站8.4空间中的平行关系最新考纲考情考向分析1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.平行直线平行公理:过直线外一点有且只有一条直线和已知直线平行.基本性质4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同
2、,那么这两个角相等.2.直线与平面平行判定性质定义定理图形条件aa,b,abaa,a,b结论abaab3.平面与平面平行判定性质定义定理图形条件a,b,abP,a,b,a,b,a结论aba概念方法微思考1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)若一条直线
3、平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)平行于同一条直线的两个平面平行.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面内无数条直线平行,则a.()(6)若,直线a,则a.()题组二教材改编2.平面平面的一个充分条件是()A.存在一条直线a,a,aB.存在一条直线a,a,aC.存在两条平行直线a,b,a,b,a,bD.存在两条异面直线a,b,a,b,a,b答案D解析若l,al,a,a,则a,a,故排除A.若l,a,al,则a,故排除B.若l,a,al,
4、b,bl,则a,b,故排除C.故选D.3.如图,在正方体ABCDA1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为_.答案平行解析连接BD,设BDACO,连接EO,在BDD1中,E为DD1的中点,O为BD的中点,所以EO为BDD1的中位线,则BD1EO,而BD1平面ACE,EO平面ACE,所以BD1平面ACE.题组三易错自纠4.(2019荆州模拟)对于空间中的两条直线m,n和一个平面,下列命题中的真命题是()A.若m,n,则mnB.若m,n,则mnC.若m,n,则mnD.若m,n,则mn答案D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可
5、能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.5.若平面平面,直线a平面,点B,则在平面内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案A解析当直线a在平面内且过B点时,不存在与a平行的直线,故选A.6.设,为三个不同的平面,a,b为直线,给出下列条件:a,b,a,b;,;,;a,b,ab.其中能推出的条件是_.(填上所有正确的序号)答案解析在条件或条件中,或与相交;由,条件满足;在中,a,abb,又b,从而,满足.题型一直线与平面平行的判定与性质命题点
6、1直线与平面平行的判定例1如图,在几何体ABCDE中,四边形ABCD是矩形,AB平面BEC,BEEC,ABBEEC2,G,F分别是线段BE,DC的中点.求证:GF平面ADE.证明方法一如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GHAB,且GHAB.又F是CD的中点,所以DFCD.由四边形ABCD是矩形得ABCD,ABCD,所以GHDF,且GHDF,从而四边形HGFD是平行四边形,所以GFDH.又DH平面ADE,GF平面ADE,所以GF平面ADE.方法二如图,取AB的中点M,连接MG,MF.又G是BE的中点,可知GMAE.又AE平面ADE,GM平面ADE,所以GM平面ADE.在
7、矩形ABCD中,由M,F分别是AB,CD的中点得MFAD.又AD平面ADE,MF平面ADE.所以MF平面ADE.又因为GMMFM,GM平面GMF,MF平面GMF,所以平面GMF平面ADE.因为GF平面GMF,所以GF平面ADE.命题点2直线与平面平行的性质例2(2019东三省四市教研联合体模拟)在如图所示的几何体中,四边形ABCD是正方形,PA平面ABCD,E,F分别是线段AD,PB的中点,PAAB1.(1)证明:EF平面PDC;(2)求点F到平面PDC的距离.(1)证明取PC的中点M,连接DM,MF,M,F分别是PC,PB的中点,MFCB,MFCB,E为DA的中点,四边形ABCD为正方形,D
8、ECB,DECB,MFDE,MFDE,四边形DEFM为平行四边形,EFDM,EF平面PDC,DM平面PDC,EF平面PDC.(2)解EF平面PDC,点F到平面PDC的距离等于点E到平面PDC的距离.PA平面ABCD,PADA,在RtPAD中,PAAD1,DP,PA平面ABCD,PACB,CBAB,PAABA,PA,AB平面PAB,CB平面PAB,CBPB,则PC,PD2DC2PC2,PDC为直角三角形,其中PDCD,SPDC1,连接EP,EC,易知VEPDCVCPDE,设E到平面PDC的距离为h,CDAD,CDPA,ADPAA,AD,PA平面PAD,CD平面PAD,则h11,h,F到平面PDC
9、的距离为.思维升华判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a,b,aba).(3)利用面面平行的性质(,aa).(4)利用面面平行的性质(,a,aa).跟踪训练1(2019沈阳联考)如图,在四棱锥PABCD中,平面PAC平面ABCD,且PAAC,PAAD2,四边形ABCD满足BCAD,ABAD,ABBC1.点E,F分别为侧棱PB,PC上的点,且(0).(1)求证:EF平面PAD;(2)当时,求点D到平面AFB的距离.(1)证明(0),EFBC.BCAD,EFAD.又EF平面PAD,AD平面PAD,EF平面PAD.(2)解,F是PC的中点,
10、在RtPAC中,PA2,AC,PC,PFPC.平面PAC平面ABCD,且平面PAC平面ABCDAC,PAAC,PA平面PAC,PA平面ABCD,PABC.又ABAD,BCAD,BCAB,又PAABA,PA,AB平面PAB,BC平面PAB,BCPB,在RtPBC中,BFPC.连接BD,DF,设点D到平面AFB的距离为d,在等腰三角形BAF中,BFAF,AB1,SABF,又SABD1,点F到平面ABD的距离为1,由VFABDVDAFB,得11d,解得d,即点D到平面AFB的距离为.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,
11、A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.证明(1)G,H分别是A1B1,A1C1的中点,GH是A1B1C1的中位线,GHB1C1.又B1C1BC,GHBC,B,C,H,G四点共面.(2)E,F分别是AB,AC的中点,EFBC.EF平面BCHG,BC平面BCHG,EF平面BCHG.又G,E分别为A1B1,AB的中点,A1B1AB且A1B1AB,A1GEB,A1GEB,四边形A1EBG是平行四边形,A1EGB.又A1E平面BCHG,GB平面BCHG,A1E平面BCHG.又A1EEFE,A1E,EF平面EFA1,平面EFA1平面BCHG.引申探究1.在本例
12、中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1平面AC1D.证明如图所示,连接A1C,AC1,交于点M,四边形A1ACC1是平行四边形,M是A1C的中点,连接MD,D为BC的中点,A1BDM.A1B平面A1BD1,DM平面A1BD1,DM平面A1BD1,又由三棱柱的性质知,D1C1BD且D1C1BD,四边形BDC1D1为平行四边形,DC1BD1.又DC1平面A1BD1,BD1平面A1BD1,DC1平面A1BD1,又DC1DMD,DC1,DM平面AC1D,因此平面A1BD1平面AC1D.2.在本例中,若将条
13、件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D平面AB1D1”,试求的值.解连接A1B,AB1,交于点O,连接OD1.由平面BC1D平面AB1D1,且平面A1BC1平面BC1DBC1,平面A1BC1平面AB1D1D1O,所以BC1D1O,则1.同理,AD1C1D,又ADC1D1,所以四边形ADC1D1是平行四边形,所以ADD1C1,又ACA1C1,所以,所以1,即1.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两
14、个平面平行.(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.跟踪训练2(2018包头质检)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF平面ABCD,DE平面ABCD,BFDE,M为棱AE的中点.(1)求证:平面BDM平面EFC;(2)若AB1,BF2,求三棱锥ACEF的体积.(1)证明如图,设AC与BD交于点N,则N为AC的中点,连接MN,又M为棱AE的中点,MNEC.MN平面EFC,EC平面EFC,MN平面EFC.BF平面ABCD,DE平面ABCD,且BFDE,BFDE且BFDE,四边形BDEF为平行四边形,BDEF.BD平面EFC,EF平面EFC,BD平面EFC
15、.又MNBDN,MN,BD平面BDM,平面BDM平面EFC.(2)解连接EN,FN.在正方形ABCD中,ACBD,又BF平面ABCD,BFAC.又BFBDB,BF,BD平面BDEF,AC平面BDEF,又N是AC的中点,V三棱锥ANEFV三棱锥CNEF,V三棱锥ACEF2V三棱锥ANEF2ANSNEF22,三棱锥ACEF的体积为.题型三平行关系的综合应用例4如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB平面EFGH,CD平面EFGH;(2)若AB4,CD6,求四边形EFGH周长的取值范围.(1)证明四边形EFGH为平行四边形,EFHG.HG平面ABD
16、,EF平面ABD,EF平面ABD.又EF平面ABC,平面ABD平面ABCAB,EFAB,又AB平面EFGH,EF平面EFGH,AB平面EFGH.同理可证,CD平面EFGH.(2)解设EFx(0x4),EFAB,FGCD,则1.FG6x.四边形EFGH为平行四边形,四边形EFGH的周长l212x.又0x4,8l12,即四边形EFGH周长的取值范围是(8,12).思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练3如图,E是正方体ABCDA1B1C1D1的棱DD1的中点,过A,C,E三点作平面与正方体的面相交
17、.(1)画出平面与正方体ABCDA1B1C1D1各面的交线;(2)求证:BD1平面.(1)解如图,交线即为EC,AC,AE,平面即为平面AEC.(2)证明连接AC,BD,设BD与AC交于点O,连接EO,四边形ABCD为正方形,O是BD的中点,又E为DD1的中点.OEBD1,又OE平面,BD1平面.BD1平面.1.下列命题中正确的是()A.若a,b是两条直线,且ab,那么a平行于经过b的任何平面B.若直线a和平面满足a,那么a与内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面满足ab,a,b,则b答案D解析A中,a可以在过b的平面内;B中,a与内的直线也可能异面;C中,两
18、平面可相交;D中,由直线与平面平行的判定定理知b,正确.2.已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是()A.若,垂直于同一平面,则与平行B.若m,n平行于同一平面,则m与n平行C.若,不平行,则在内不存在与平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面答案D解析A项,可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m,n,mn,则m,故错误;D项,假设m,n垂直于同一平面,则必有mn,所以原命题正确,故D项正确.3.如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A
19、.异面B.平行C.相交D.以上均有可能答案B解析在三棱柱ABCA1B1C1中,ABA1B1.AB平面ABC,A1B1平面ABC,A1B1平面ABC.过A1B1的平面与平面ABC交于DE,DEA1B1,DEAB.4.(2018包头模拟)若平面截三棱锥所得截面为平行四边形,则该三棱锥与平面平行的棱有()A.0条 B.1条C.2条 D.0条或2条答案C解析如图设平面截三棱锥所得的四边形EFGH是平行四边形,则EFGH,EF平面BCD,GH平面BCD,所以EF平面BCD,又EF平面ACD,平面ACD平面BCDCD,则EFCD,EF平面EFGH,CD平面EFGH,则CD平面EFGH,同理AB平面EFGH
20、,所以该三棱锥与平面平行的棱有2条,故选C.5.(2017全国)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案A解析A项,作如图所示的辅助线,其中D为BC的中点,则QDAB.QD平面MNQQ,QD与平面MNQ相交,直线AB与平面MNQ相交;B项,作如图所示的辅助线,则ABCD,CDMQ,ABMQ,又AB平面MNQ,MQ平面MNQ,AB平面MNQ;C项,作如图所示的辅助线,则ABCD,CDMQ,ABMQ,又AB平面MNQ,MQ平面MNQ,AB平面MNQ;D项,作如图所示的辅助线,则ABCD,CDNQ,ABN
21、Q,又AB平面MNQ,NQ平面MNQ,AB平面MNQ.故选A.6.,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么;如果m,n,那么mn;如果,m,那么m;如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有_.(填写所有正确命题的序号)答案解析当mn,m,n时,两个平面的位置关系不确定,故错误,经判断知均正确,故正确答案为.7.(2018大连模拟)设m,n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若n,mn,m,则m;若m,n,mn,则.其中是真命题的是_.(填序号)答案解析mn或m,n异面,故错误;易知正确;m或m
22、,故错误;或与相交,故错误.8.棱长为2的正方体ABCDA1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是_.答案解析由面面平行的性质知截面与面AB1的交线MN是AA1B的中位线,所以截面是梯形CD1MN,易求其面积为.9.如图所示,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上.若EF平面AB1C,则线段EF的长度为_.答案解析在正方体ABCDA1B1C1D1中,AB2,AC2.又E为AD中点,EF平面AB1C,EF平面ADC,平面ADC平面AB1CAC,EFAC,F为DC中点,EFAC.10.如图所示,在正四棱柱ABCDA1B1C
23、1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件_时,就有MN平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN,则FHDD1,HNBD,平面FHN平面B1BDD1,只需MFH,则MN平面FHN,MN平面B1BDD1.11.如图,在四棱锥PABCD中,ABCACD90,BACCAD60,PA平面ABCD,PA2,AB1.设M,N分别为PD,AD的中点.(1)求证:平面CMN平面PAB;(2)求三棱锥PABM的体积.(
24、1)证明M,N分别为PD,AD的中点,MNPA,又MN平面PAB,PA平面PAB,MN平面PAB.在RtACD中,CAD60,CNAN,ACN60.又BAC60,CNAB.CN平面PAB,AB平面PAB,CN平面PAB.又CNMNN,CN,MN平面CMN,平面CMN平面PAB.(2)解由(1)知,平面CMN平面PAB,点M到平面PAB的距离等于点C到平面PAB的距离.AB1,ABC90,BAC60,BC,三棱锥PABM的体积VVMPABVCPABVPABC12.12.如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD平面CD1B1;(2)若平面ABCD平面B1
25、D1C直线l,证明:B1D1l.证明(1)由题设知BB1DD1且BB1DD1,所以四边形BB1D1D是平行四边形,所以BDB1D1.又BD平面CD1B1,B1D1平面CD1B1,所以BD平面CD1B1.因为A1D1B1C1BC且A1D1B1C1BC,所以四边形A1BCD1是平行四边形,所以A1BD1C.又A1B平面CD1B1,D1C平面CD1B1,所以A1B平面CD1B1.又因为BDA1BB,BD,A1B平面A1BD,所以平面A1BD平面CD1B1.(2)由(1)知平面A1BD平面CD1B1,又平面ABCD平面B1D1C直线l,平面ABCD平面A1BD直线BD,所以直线l直线BD,在四棱柱AB
26、CDA1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1BD,所以B1D1l.13.如图,正方体ABCDA1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF,则下列结论中错误的是()A.ACBFB.三棱锥ABEF的体积为定值C.EF平面ABCDD.异面直线AE,BF所成的角为定值答案D解析ABCDA1B1C1D1为正方体,易证AC平面BDD1B1,BF平面BDD1B1,ACBF,故A正确;对于选项B,E,F,B在平面BDD1B1上,A到平面BEF的距离为定值,EF,B到直线EF的距离为1,BEF的面积为定值,三棱锥ABEF的体积为定值,故B正确;对于选项C,EFBD
27、,BD平面ABCD,EF平面ABCD,EF平面ABCD,故C正确;对于选项D,异面直线AE,BF所成的角不为定值,令上底面中心为O,当F与B1重合时,E与O重合,易知两异面直线所成的角是A1AO,当E与D1重合时,点F与O重合,连接BC1,易知两异面直线所成的角是OBC1,可知这两个角不相等,故异面直线AE,BF所成的角不为定值,故D错误.14.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCDA1B1C1D1中,AA12,AB1,M,N分别在AD1,BC上移动,始终保持MN平面DCC1D1,设BNx,MNy,则函数yf(x)的图象大致是()答案C解析过M作MQDD1,交AD于点Q,连接
28、QN.MQ平面DCC1D1,DD1平面DCC1D1,MQ平面DCC1D1,MN平面DCC1D1,MNMQM,平面MNQ平面DCC1D1.又平面ABCD与平面MNQ和DCC1D1分别交于QN和DC,NQDC,可得QNCDAB1,AQBNx,2,MQ2x.在RtMQN中,MN2MQ2QN2,即y24x21,y24x21(x0,y1),函数yf(x)的图象为焦点在y轴上的双曲线上支的一部分.故选C.15.如图,在三棱锥SABC中,ABC是边长为6的正三角形,SASBSC10,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且D,E分别是AB,BC的中点,如果直线SB平面DEFH,那么四边
29、形DEFH的面积为()A. B.C.15 D.45答案C解析取AC的中点G,连接SG,BG.易知SGAC,BGAC,SGBGG,SG,BG平面SGB,故AC平面SGB,所以ACSB.因为SB平面DEFH,SB平面SAB,平面SAB平面DEFHHD,则SBHD.同理SBFE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HFAC且HFAC,DEAC且DEAC,所以HFDE且HFDE,所以四边形DEFH为平行四边形.因为ACSB,SBHD,DEAC,所以DEHD,所以四边形DEFH为矩形,其面积SHFHD15.16.如图,在四棱锥PABCD中,PA底面ABCD,四边形ABCD
30、为直角梯形,AC与BD相交于点O,ADBC,ADAB,ABBCAP3,三棱锥PACD的体积为9.(1)求AD的值;(2)过点O的平面平行于平面PAB,平面与棱BC,AD,PD,PC分别相交于点E,F,G,H,求截面EFGH的周长.解(1)在四棱锥PABCD中,PA底面ABCD,四边形ABCD为直角梯形,ADBC,ADAB,ABBCAP3,所以V三棱锥PACDSACDAPAP9,解得AD6.(2)方法一由题意知平面平面PAB,平面平面ABCDEF,点O在EF上,平面PAB平面ABCDAB,根据面面平行的性质定理,得EFAB,同理EHBP,FGAP.因为BCAD,所以BOCDOA,且.因为EFAB
31、,所以.又易知BEAF,AD2BC,所以FD2AF.因为FGAP,所以,FGAP2.因为EHBP,所以,所以EHPB.如图,作HNBC,GMAD,HNPBN,GMPAM,则HNGM,HNGM,所以四边形GMNH为平行四边形,所以GHMN,在PMN中,MN,又EFAB3,所以截面EFGH的周长为EFFGGHEH325.方法二因为平面平面PAB,平面平面ABCDEF,点O在EF上,平面PAB平面ABCDAB,所以EFAB,同理EHBP,FGAP.因为BCAD,AD6,BC3,所以BOCDOA,且,所以,CECB1,BEAF2,同理,如图,连接HO,则HOPA,所以HOEO,HO1,所以EHPB,因为ADBC,所以.因为EFAB,所以.因为FGAP,所以,所以FGPA2,过点H作HNEF交FG于点N,则GH,又EFAB3,所以截面EFGH的周长为EFFGGHEH325.公众号码:王校长资源站