1、必备知识必备知识逐逐点夯实点夯实第四节空间直线第四节空间直线、平、平面的垂直面的垂直第八章第八章 立体几何初步、空间向量与立体几何立体几何初步、空间向量与立体几何核心考点核心考点分类突破分类突破【课标解读】【课程标准】1.从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的垂直关系的定义,归纳出有关垂直的性质定理和判定定理,并加以证明.2.能运用已获得的结论证明空间基本图形位置关系的简单命题.【核心素养】直观想象、数学运算、逻辑推理.【命题说明】考向考法高考题常以空间几何体为载体,考查空间直线、平面的垂直关系.线面垂直是高考的热点,在各种题型中都会有所
2、体现.预测2025年高考这一部分知识仍会考查,以解答题第(1)问的形式出现,难度中档.必备知识必备知识逐点夯实逐点夯实知识梳理归纳1.直线与平面垂直(1)直线和平面垂直的定义一般地,如果直线l与平面内的_一条直线都垂直,我们就说直线l与平面互相垂直.任意(2)判定定理与性质定理类型文字语言图形表示符号表示判定定理如果一条直线与一个平面内的_垂直,那么该直线与此平面垂直性质定理垂直于同一个平面的两条直线_两条相交直线平行2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的_所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,则它们所成的角是_;一条直线和平面平行或在平面内,则
3、它们所成的角是0.(2)范围:_3.二面角(1)定义:从一条直线出发的_所组成的图形叫做二面角.射影90两个半平面(2)二面角的平面角若有Ol;OA,OB;OAl,OBl,则二面角-l-的平面角是_.(3)二面角的平面角的范围:_.4.平面与平面垂直(1)定义一般地,两个平面相交,如果它们所成的二面角是_,就说这两个平面互相垂直.AOB0180 直二面角(2)判定定理与性质定理类型文字语言图形表示符号表示判定定理如果一个平面过另一个平面的_,那么这两个平面垂直性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的_,那么这条直线与另一个平面垂直垂线交线常用结论1.若两平行线中的一条垂直
4、于一个平面,则另一条也垂直于这个平面.2.若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).3.垂直于同一条直线的两个平面平行.基础诊断自测1.(思考辨析)(正确的打“”,错误的打“”)(1)已知直线a,b,c,若ab,bc,则ac.()(2)直线l与平面内的无数条直线都垂直,则l.()(3)设m,n是两条不同的直线,是一个平面,若mn,m,则n.()(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()类型辨析改编易错高考题号1234提示:(1)中a,c可能相交、平行也可能异面;(2)中若平面内的无数条直线都平行,则l与不一定垂直;
5、(4)中平面内与交线垂直的直线与另一个平面垂直.2.(必修二P161例10变形式)如图所示,在RtABC中,ABC=90,P为ABC所在平面外一点,PA平面ABC,则四面体P-ABC中直角三角形的个数为()A.4B.3C.2D.1【解析】选A.在RtABC中,ABC=90,P为ABC所在平面外一点,PA平面ABC,所以BCPA,因为BCAB,PAAB=A,所以BC平面PAB.所以四面体P-ABC中直角三角形有PAC,PAB,ABC,PBC,共4个.3.(多选题)(空间垂直关系不清致误)下列命题中不正确的是()A.如果直线a不垂直于平面,那么平面内一定不存在直线垂直于直线aB.如果平面垂直于平面
6、,那么平面内一定不存在直线平行于平面C.如果直线a垂直于平面,那么平面内一定不存在直线平行于直线aD.如果平面平面,那么平面内所有直线都垂直于平面【解析】选ABD.A中存在无数条在平面内与a垂直的直线;B中内与交线平行的直线与平行.若直线a垂直于平面,则直线a垂直于平面内的所有直线,故C正确,不符合题意,D中内与交线不垂直的直线与不垂直.4.(2021浙江高考)如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN平面ABCDB.直线A1D与直线D1B平行,直线MN平面BDD1B1C.直线A1D与直线D1B相交,直线MN平面
7、ABCDD.直线A1D与直线D1B异面,直线MN平面BDD1B1【解析】选A.连接AD1(图略),则易得点M在AD1上,且M为AD1的中点,AD1A1D.因为AB平面AA1D1D,A1D平面AA1D1D,所以ABA1D,又ABAD1=A,AB,AD1平面ABD1,所以A1D平面ABD1,又BD1平面ABD1,显然A1D与BD1异面,所以A1D与BD1异面且垂直.在ABD1中,由中位线定理可得MNAB,又MN平面ABCD,AB平面ABCD,所以MN平面ABCD.易知直线AB与平面BB1D1D成45角,所以MN与平面BB1D1D不垂直.核心考点核心考点分类突破分类突破考点一直线与平面垂直的判定与性
8、质考情提示直线与平面垂直作为空间垂直关系的载体因其集中考查直线与平面垂直的判定定理和性质定理而成为高考的热点,涉及直线与平面垂直关系的判断、证明以及线面垂直关系在空间几何体中的实际应用.【证明】(1)因为AB平面PAD,AB平面ABCD,所以平面PAD平面ABCD.因为平面PAD平面ABCD=AD,PHAD,所以PH平面ABCD.角度2直线与平面垂直的性质例2如图,在四棱锥P-ABCD中,四边形ABCD是矩形,AB平面PAD,AD=AP,E是PD的中点,M,N分别在AB,PC上,且MNAB,MNPC.证明:AEMN.【证明】因为AB平面PAD,AE平面PAD,所以AEAB.又ABCD,所以AE
9、CD.因为AD=AP,E是PD的中点,所以AEPD.又CDPD=D,CD,PD平面PCD,所以AE平面PCD.因为MNAB,ABCD,所以MNCD.又因为MNPC,PCCD=C,PC,CD平面PCD,所以MN平面PCD,所以AEMN.解题技法1.证明线面垂直的常用方法(1)判定定理;(2)垂直于平面的传递性(ab,ab);(3)面面平行的性质(a,a);(4)面面垂直的性质.2.直线与平面垂直性质的解题策略(1)判定定理与性质定理的合理转化是证明线面垂直的基本思想,证明线线垂直则需借助线面垂直的性质.(2)在解题中要重视平面几何的知识,特别是正余弦定理及勾股定理的应用.(3)重要结论要熟记:经
10、过一点与已知直线垂直的直线都在过这点且与已知直线垂直的平面内.此结论可帮助解决动点的轨迹问题.对点训练1.如图所示,在四棱锥P-ABCD中,PA底面ABCD,ABAD,ACCD,ABC=60,PA=AB=BC,E是PC的中点.证明:(1)CDAE;【证明】(1)在四棱锥P-ABCD中,因为PA底面ABCD,CD平面ABCD,所以PACD.因为ACCD,PAAC=A,所以CD平面PAC.而AE平面PAC,所以CDAE.1.如图所示,在四棱锥P-ABCD中,PA底面ABCD,ABAD,ACCD,ABC=60,PA=AB=BC,E是PC的中点.证明:(2)PD平面ABE.【证明】(2)由PA=AB=
11、BC,ABC=60,所以ABC是等边三角形,所以AC=PA.因为E是PC的中点,所以AEPC.由(1)知AECD,且PCCD=C,所以AE平面PCD.而PD平面PCD,所以AEPD.因为PA底面ABCD,所以PAAB.又因为ABAD且PAAD=A,所以AB平面PAD,而PD平面PAD,所以ABPD.又因为ABAE=A,所以PD平面ABE.2.如图所示,已知正方体ABCD-A1B1C1D1.(1)求证:A1CB1D1;【证明】(1)连接A1C1(图略).因为CC1平面A1B1C1D1,B1D1平面A1B1C1D1,所以CC1B1D1.因为四边形A1B1C1D1是正方形,所以A1C1B1D1.又C
12、C1A1C1=C1,所以B1D1平面A1C1CA.又A1C平面A1C1CA,所以A1CB1D1.2.如图所示,已知正方体ABCD-A1B1C1D1.(2)M,N分别为B1D1与C1D上的点,且MNB1D1,MNC1D,求证:MNA1C.【证明】(2)连接B1A,AD1(图略).因为B1C1AD,所以四边形ADC1B1为平行四边形,所以C1DAB1.因为MNC1D,所以MNAB1.又MNB1D1,AB1B1D1=B1,所以MN平面AB1D1.易得A1CAB1,由(1)知A1CB1D1,又AB1B1D1=B1,所以A1C平面AB1D1,所以MNA1C.考点二平面与平面垂直的判定与性质考情提示平面与
13、平面垂直作为空间垂直关系的载体因其集中考查平面与平面垂直的判定定理,性质定理成为高考的热点,涉及平面与平面垂直关系的判断、证明以及在空间几何体中的实际应用.角度1平面与平面垂直的判定例3如图,四棱锥P-ABCD中,底面ABCD是菱形,对角线AC,BD交于点O,M为棱PD的中点,MA=MC.求证:(1)PB平面AMC;【证明】(1)连接OM(图略),因为O是菱形ABCD对角线AC,BD的交点,所以O为BD的中点,因为M是棱PD的中点,所以OMPB,因为OM平面AMC,PB平面AMC,所以PB平面AMC.例3如图,四棱锥P-ABCD中,底面ABCD是菱形,对角线AC,BD交于点O,M为棱PD的中点
14、,MA=MC.求证:(2)平面PBD平面AMC.【证明】(2)在菱形ABCD中,ACBD,且O为AC的中点,因为MA=MC,所以ACOM,因为OMBD=O,所以AC平面PBD,因为AC平面AMC,所以平面PBD平面AMC.角度2平面与平面垂直的性质例4在矩形ABCD中,AB=2AD=4,E是AB的中点,沿DE将ADE折起,得到如图所示的四棱锥P-BCDE.(1)若平面PDE平面BCDE,求四棱锥P-BCDE的体积;例4在矩形ABCD中,AB=2AD=4,E是AB的中点,沿DE将ADE折起,得到如图所示的四棱锥P-BCDE.(2)若PB=PC,求证:平面PDE平面BCDE.【解析】(2)取BC的
15、中点N,连接PN,MN,则BCMN,因为PB=PC,所以BCPN,因为MNPN=N,MN,PN平面PMN,所以BC平面PMN,因为PM平面PMN,所以BCPM,由(1)知,PMDE,又BC,DE平面BCDE,且BC与DE延长后是相交的,所以PM平面BCDE,因为PM平面PDE,所以平面PDE平面BCDE.解题技法关于面面垂直的判定与性质(1)判定面面垂直的方法面面垂直的定义.面面垂直的判定定理.(2)面面垂直性质的应用面面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.若两个相交平面同时垂直于第三个平面,则它们的交线也垂直于第三个平面.对点训练如图,在四棱锥P-A
16、BCD中,底面ABCD是菱形,BAD=60,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD平面PNB;【解析】(1)连接BD(图略).因为PA=PD,N为AD的中点,所以PNAD.又底面ABCD是菱形,BAD=60,所以ABD为等边三角形,所以BNAD.又PNBN=N,所以AD平面PNB.如图,在四棱锥P-ABCD中,底面ABCD是菱形,BAD=60,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(2)若平面PAD平面ABCD,求三棱锥P-NBM的体积.考点三直线、平面垂直的综合应用例5如图,在四棱锥P-ABCD中,底面ABC
17、D为矩形,平面PAD平面ABCD,PAPD,PA=PD,E,F分别为AD,PB的中点.求证:(1)PEBC;【证明】(1)因为PA=PD,E为AD的中点,所以PEAD.因为底面ABCD为矩形,所以BCAD,所以PEBC.例5如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PA=PD,E,F分别为AD,PB的中点.求证:(2)平面PAB平面PCD;【证明】(2)因为底面ABCD为矩形,所以ABAD.又因为平面PAD平面ABCD,平面PAD平面ABCD=AD,AB平面ABCD,所以AB平面PAD.又PD平面PAD,所以ABPD.又因为PAPD,且PAAB=A,所
18、以PD平面PAB.又PD平面PCD,所以平面PAB平面PCD.例5如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PA=PD,E,F分别为AD,PB的中点.求证:(3)EF平面PCD.解题技法关于线、面垂直关系的综合应用(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.求解时应注意垂直的性质及判定的综合应用.(2)如果有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.对点训练如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点
19、F.(1)求证:ABEF;【证明】(1)因为四边形ABCD是矩形,所以ABCD.又AB平面PDC,CD平面PDC,所以AB平面PDC.又因为AB平面ABE,平面ABE平面PDC=EF,所以ABEF.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(2)若AFEF,求证:平面PAD平面ABCD.【证明】(2)因为四边形ABCD是矩形,所以ABAD.因为AFEF,(1)中已证ABEF,所以ABAF.又ABAD,由点E在棱PC上(异于点P,C),所以点F异于点P,D,所以AFAD=A.又AF,AD平面PAD,所以AB平面PAD.又AB平面
20、ABCD,所以平面PAD平面ABCD.重难突破球与几何体的切、接问题【解题关键】(1)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.(2)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.1.常见几何体的内切球和外接球(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等;(2)正多面体的内切球和外接球的球心重合;(3)正棱锥的内切球和外接球的球心都在高线上.【说明】求
21、外接球或内切球的方法:在球内部构造直角三角形,利用勾股定理求解.命题点4组合体的外接球例4(2023安庆模拟)我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为2,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积为.9解题技法求解外接球问题的方法(1)解决多面体外接球问题的关键是确定球心的位置,方法是先选择多面体中的一面,确定此面多边形外接圆的圆心,再过此圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点的情况确定球心的准确位置.(2)对于特殊的多面体还可通过补成正方体或长方体的方法找到球心位置.命题点2锥体的内切球例6已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.解题技法与球有关的最值问题的解法(1)从图形的特征入手:观察分析问题的几何特征,充分利用其几何性质解决.(2)从代数关系入手:解题时,通过分析题设中的所有条件,在充分审清题目意思的基础上,从问题的几何特征入手,利用其几何性质,找出问题中的代数关系,建立目标函数,利用函数最值的方法求解.谢谢观赏!谢谢观赏!