2020年广东中考数学复习课件§3.4 二次函数.pptx

上传人(卖家):小豆芽 文档编号:354031 上传时间:2020-03-11 格式:PPTX 页数:253 大小:4.99MB
下载 相关 举报
2020年广东中考数学复习课件§3.4 二次函数.pptx_第1页
第1页 / 共253页
2020年广东中考数学复习课件§3.4 二次函数.pptx_第2页
第2页 / 共253页
2020年广东中考数学复习课件§3.4 二次函数.pptx_第3页
第3页 / 共253页
2020年广东中考数学复习课件§3.4 二次函数.pptx_第4页
第4页 / 共253页
2020年广东中考数学复习课件§3.4 二次函数.pptx_第5页
第5页 / 共253页
点击查看更多>>
资源描述

1、考点一 二次函数的图象与性质,A组 20152019年广东中考题组,1.(2019深圳,9,3分)已知y=ax2+bx+c(a0)的图象如图,则y=ax+b和y= 的图象为 ( ),答案 C 抛物线的开口向下,a0,b0, 抛物线与y轴的交点在y轴的负半轴上,c0,y=ax+b的图象经过第一、二、四象限, c0,y= 的图象在第二、四象限.故选C.,方法归纳 根据一元二次函数y=ax2+bx+c(a0)的图象判断a,b,c的正负的方法:开口向上,a0,开口向下, a0,与y轴交于负半轴,c0.,2.(2018深圳,11,3分)二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论正确的是

2、 ( ) A.abc0 B.2a+b0 C.3a+c0 D.ax2+bx+c-3=0(a0)有两个不相等的实数根,答案 C 由该抛物线的开口向下可知a 0,当x=0时,函数值y=c,由函数图象与y轴交于正半轴可知c0,a0,c0,abc0,故A选项错误;当x=-1 时,由函数图象可知,其函数值y0,即a-b+c0,把b=-2a代入得a-(-2a)+c0,即3a+c0,故C选项正确;关于x的二 次方程ax2+bx+c-3=0(a0)的实数根是函数y=ax2+bx+c-3(a0)的图象与x轴交点的横坐标,由二次函数y=ax2 +bx+c(a0)的图象可知,向下平移3个单位所得的二次函数y=ax2+

3、bx+c-3(a0)的图象与x轴只有一个交点, 所以方程ax2+bx+c-3=0(a0)有两个相等的实数根,故D选项错误.故选C.,思路分析 对二次函数的图象进行分析,对a、b、c的含义及其之间的相互关系、函数对称轴、顶点以及 图象与坐标轴的交点等进行分析,即可求得正确答案.,方法总结 本题考查二次函数的性质,解题的关键是熟练掌握二次函数的图象与性质,本题属于基础题.,3.(2016广州,9,3分)对于二次函数y=- x2+x-4,下列说法正确的是 ( ) A.当x0时,y随x的增大而增大 B.当x=2时,y有最大值-3 C.图象的顶点坐标为(-2,-7) D.图象与x轴有两个交点,答案 B

4、A.由题可知,该二次函数的图象开口向下,对称轴为直线x=2.因此,当x2时,y随x的增大而减小,所以A错; B.当x=2时,y有最大值-3,所以B正确; C.该二次函数图象的顶点坐标为(2,-3),所以C错; D.=12-4 (-4)=-30,因此该二次函数的图象与x轴没有交点,所以D错.,4.(2015梅州,7,3分)对于二次函数y=-x2+2x有下列结论:它的对称轴是直线x=1;设y1=- +2x1,y2=- +2x2, 则当x2x1时,有y2y1;它的图象与x轴的两个交点是(0,0)和(2,0);当00.其中正确结论的个数为 ( ) A.1 B.2 C.3 D.4,答案 C 二次函数y=

5、-x2+2x的图象如图所示,对称轴为直线x=1,与x轴的交点为(0,0),(2,0),所以正确.当 00,所以正确.由图象可知,当x2x1时,y1与y2的大小不能确定,所以错误, 故选C.,思路分析 作出函数的图象,观察可知正确,利用函数图象的增减性,可判断错误.,5.(2018广州,11,3分)已知二次函数y=x2,当x0时,y随x的增大而 (填“增大”或“减小”).,答案 增大,解析 二次函数y=x2的图象开口向上,对称轴为y轴,所以当x0时,y随x的增大而增大.,6.(2017广州,13,3分)当x= 时,二次函数y=x2-2x+6 有最小值 .,答案 1;5,解析 y=x2-2x+6=

6、x2-2x+1+5=(x-1)2+5,抛物线开口向上,函数在顶点处取得最小值,当x=1时,y最小=5.,7.(2016梅州,14,4分)如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且PCD是以CD为底 的等腰三角形,则点P的坐标为 .,答案 (1+2 ,2)或(1-2 ,2),解析 PCD是以CD为底的等腰三角形,CD的垂直平分线与抛物线的交点即为点P,点D(0,1),点 C(0,3),点P的纵坐标为2,把y=2代入抛物线的解析式得-x2+2x+3=2,解得x=1 , 点P的坐标为(1+2 ,2)或(1-2 ,2).,8.(2018广东,23,9分)如图,已

7、知顶点为C(0,-3)的抛物线y=ax2+b(a0)与x轴交于A、B两点,直线y=x+m过顶点 C和点B. (1)求m的值; (2)求函数y=ax2+b(a0)的解析式; (3)抛物线上是否存在点M,使得MCB=15?若存在,求出点M的坐标;若不存在,请说明理由.,解析 (1)直线y=x+m过点C(0,-3), -3=0+m,解得m=-3. (2)点B是直线y=x-3与x轴的交点, 点B的坐标为(3,0), 依题意,得 解得 故抛物线的解析式为y= x2-3. (3)存在.,设点M的坐标为 , OB=OC,BOC=90,OCB=45, 又MCB=15,MCO=30或60, tanMCO= 或

8、, 而tanMCO= = , x=3 或 . 故点M的坐标为(3 ,6)或( ,-2).,解题关键 本题是几何图形问题与函数问题结合的综合应用题,能考虑到(3)的分类情况,并利用特殊角的 三角函数值求解是解题的关键.,思路分析 (1)直接把点C的坐标代入直线y=x+m的解析式就可求出m. (2)先求出点B的坐标,再把点C、B的坐标代入抛物线y=ax2+b(a0)中求出a、b的值,即可得到抛物线的解 析式. (3)由条件MCB=15,易得MCO=30或60,再利用特殊角的三角函数值求出点M的坐标.,考点二 二次函数与一元二次方程的联系,1.(2017广州,23,12分)已知抛物线y1=-x2+m

9、x+n,直线y2=kx+b,y1的对称轴与y2交于点A(-1,5),点A与y1的顶点B的 距离是4. (1)求y1的解析式; (2)若y2随x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.,解析 (1)抛物线y1的对称轴与直线y2的交点为A(-1,5), 抛物线y1的对称轴为x=- =- = =-1,m=-2, y1=-x2-2x+n=-(x2+2x+1)+n+1=-(x+1)2+n+1, 顶点坐标为B(-1,n+1). 点A到顶点B的距离是4, AB= = =4, |n-4|=4, n1=0,n2=8. y1=-x2-2x或y1=-x2-2x+8. (2)当y1=-x2-2

10、x=-x(x+2)时, 抛物线y1=-x2-2x与x轴的交点为(0,0),(-2,0). y2随x的增大而增大,k0. (i)当直线y2=kx+b经过点A(-1,5),(0,0)时, 有 解得 y2=-5x(舍去). (ii)当直线y2=kx+b经过点A(-1,5),(-2,0)时, 有 解得 y2=5x+10. 当y1=-x2-2x+8时, 令y1=0,即-x2-2x+8=0,解得x1=2,x2=-4, 抛物线y1=-x2-2x+8与x轴交于点(2,0),(-4,0). (i)当直线y2=kx+b经过点A(-1,5),(2,0)时,有 解得 y2=- x+ (舍去). (ii)当直线y2=k

11、x+b经过点A(-1,5),(-4,0)时, 有 解得 y2= x+ . 综上,y2=5x+10或y2= x+ .,评析 本题主要考查了二次函数与一次函数的性质以及用待定系数法求函数解析式等知识,也考查了学生 的推理能力、计算能力和分类讨论能力.,易错警示 只考虑了A点在顶点B的上方(或者下方),造成漏解.,2.(2016梅州,24,10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A、B、C三点,点A的坐标是(3,0), 点C的坐标是(0,-3),动点P在抛物线上. (1)b= ,c= ,点B的坐标为 ;(直接填写结果) (2)是否存在点P,使得ACP是以AC为直角边的直角三角

12、形?若存在,求出所有符合条件的点P的坐标;若不,存在,说明理由; (3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF.当线段EF的长度最 短时,求出点P的坐标.,解析 (1)-2;-3;(-1,0). (3分)(每空1分) (2)存在. (4分) 当以点C为直角顶点时,过点C作CP1AC,交抛物线于点P1,过点P1作y轴的垂线,垂足为点M. OA=OC,AOC=90, OCA=OAC=45, ACP1=90, MCP1=90-45=45=CP1M, MC=MP1. (5分) 由(1)可得抛物线解析式为y=x2-2x-3. 设P1(m,m2-2m-3),

13、则m=-3-(m2-2m-3),解得m1=0(舍去),m2=1, m2-2m-3=-4. 则点P1的坐标是(1,-4). (6分) 当以点A为直角顶点时,过点A作AP2AC,交抛物线于点P2,过点P2作y轴的垂线,垂足为点N,AP2交y轴于点 F, P2Nx轴. CAO=45,OAP2=45, FP2N=45,OFA=P2FN=45, AO=OF=3,P2N=NF. 设P2(n,n2-2n-3),则-n=(n2-2n-3)-3. 解得n1=3(舍去),n2=-2. n2-2n-3=5, 则点P2的坐标是(-2,5).,综上所述,点P的坐标是(1,-4)或(-2,5). (7分) (3)连接OD

14、,由题意可知,四边形OFDE是矩形,则OD=EF. 根据垂线段最短,可知当ODAC时,OD最短,即EF最短. (8分) 设点P的坐标为(x,x2-2x-3), 在RtAOC中,OC=OA=3,ODAC, 点D是AC的中点,又DFOC, 点F是AO的中点,DF= OC= . 点P的纵坐标是- . (9分) 则x2-2x-3=- ,解得x= .,当EF最短时,点P的坐标是 或 . (10分),考点三 二次函数的应用,1.(2019深圳,22,9分)如图,抛物线y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC. (1)求抛物线的解析式及其对称轴; (2)点D、E是在直线x=1上的

15、两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值; (3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为35两部分,求点P的坐标.,解析 (1)点C(0,3), OC=3, OB=OC=3, 点B(3,0). 将点A(-1,0),B(3,0),C(0,3)代入y=ax2+bx+c中,得 解得 抛物线的解析式为y=-x2+2x+3, 其对称轴为直线x=- =1. (2)如图,作点C关于对称轴x=1的对称点C(2,3),连接CC,CD,将点A向上平移一个单位长度得到点A(-1,1),连 接AA,AD,AC,易得四边形AADE为平行四边形,AD=AE,AC=

16、=10,DE=1, C四边形ACDE=AC+DE+CD+AE= +1+CD+AE, 要使C四边形ACDE最小,只需CD+AE最小即可, CD+AE=DC+AD,要使C四边形ACDE最小,只需AD+DC最小即可, 当A,D,C三点共线时,AD+DC有最小值 , 四边形ACDE的周长的最小值为 + +1. (3)如图,设PC交x轴于E点,过点A作AMCP于点M,过点B作BNCP于点N, SPAC= PCAM,SPBC= PCBN,SPACSPBC=AMBN=35或53,即 = 或 , 易证MAENBE, = = 或 , 易得点E为 或 , 直线CE的解析式为y=-2x+3或y=-6x+3, 当y=

17、-2x+3时,联立直线CE的解析式与抛物线的解析式,解得点P(4,-5), 当y=-6x+3时,联立直线CE的解析式与抛物线的解析式,解得点P(8,-45).,思路分析 (1)由OB=OC,求出点B坐标,将点A,B,C的坐标代入y=ax2+bx+c中,得到关于a,b,c的三元一次方程 组,解方程组便可得抛物线的解析式,利用x=- 求出抛物线的对称轴. (2)作C关于对称轴x=1的对称点C,将点A向上平移一个单位长度得到点A,这样C四边形ACDE=AC+CD+DE+AE= AC+DC+DE+AD,由AC,DE的长为定值,知只需DC+AD的值最小即可,根据当A,D,C三点共线时,AD+DC 的值最

18、小,得出四边形ACDE周长的最小值为 + +1. (3)过点A作AMPC于点M,过点B作BNPC于点N,由PAC和PCB是同底不同高的三角形,易得 SPACSPCB=AMBN,PC与x轴交于点E,易证MAENBE,从而得出AEBE=AMBN=35或53, 分类讨论得出点E的坐标,求出CE所在直线的解析式,联立直线CE的解析式和抛物线的解析式,求出点P 的坐标即可.,2.(2019广东,25,9分)如图1,在平面直角坐标系中,抛物线y= x2+ x- 与x轴交于点A、B(点A在点B右 侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,CAD绕点C顺时针旋转得到CFE,点A恰 好旋

19、转到点F,连接BE. (1)求点A、B、D的坐标; (2)求证:四边形BFCE是平行四边形; (3)如图2,过顶点D作DD1x轴于点D1,点P是抛物线上一动点,过点P作PMx轴,点M为垂足,使得PAM与 DD1A相似(不含全等). 求出一个满足以上条件的点P的横坐标; 直接回答这样的点P共有几个?,图1,图2,解析 (1)由y= x2+ x- ,得y= (x+3)2-2 , 点D的坐标为(-3,-2 ). (1分) 由y= x2+ x- =0, 得x1=1,x2=-7, 点A的坐标为(1,0),点B的坐标为(-7,0). (3分) (2)证明: 点A恰好旋转到点F, AC=CF. 又COAF,

20、 AO=OF=1, 点F的坐标为(-1,0),AF=2. 设直线CD的表达式是y=kx+b(k0),直线CD过点D,F, y= x+ . C(0, ). (4分) AC= = =2, AC=AF=FC=2, ACF是等边三角形, CFA=ACF=CAF=60, ECF=ACF=60, CFA=ECF=60, ECAB. (5分),过点D作DGy轴于点G,则DG=3,而DCG=30, CD=6, CE=CD=6, 而点F的坐标为(-1,0),点B的坐标为(-7,0), FB=6, FB=CE, 四边形BFCE是平行四边形. (6分) (3)(以下给出了三个点P横坐标的求解过程 ,考生只需写出其中

21、一个P点的横坐标的求解过程即可),设点P的坐标为 ,易知点P与A、B重合时均不符合要求, 所以m1,m-7. ()如图,点P在点A右侧时,m1,若PAM与DD1A相似,因为都是直角三角形,所以必有一锐角相等. (i)若PAM=DAD1,则点P、A、D共线, 而直线AD与抛物线只有两个交点A、D, 所以这种情况不存在点P,使得PAM与DD1A相似. (ii)若PAM=ADD1,则 = , = , m=1或m=- ,均不满足m1. 当点P在点A右侧时,不存在点P,使得PAM与DD1A相似. (如果考生只写了这种情况,酌情给分) ()如图,当点P在点A和点B之间时,-7m1. (i)若PAM=DAD

22、1,则AD与AP重合, 此时不存在点P,使得PAM与DD1A相似(不含全等).,(ii)若PAM=ADD1,则 = , = , m=1或m=- , 又-7m1,m=- . 当m=- 时,PAM与DD1A相似. (8分) ()如图,当点P在点B左侧时,m-7. (i)若PAM=DAD1,则 = , = , m=1或m=-11, 又m-7,m=-11. 当m=-11时,PAM与DD1A相似. (8分) (ii)若PAM=ADD1,则 = , = ,m=1或m=- , 又m-7,m=- . 当m=- 时,PAM与DD1A相似. (8分) 一共存在三个点P,使得PAM与DD1A相似. (9分) (本卷

23、所有题参考答案只提供一种解法,其他解法只要正确,请参照本答案相应给分),3.(2019广州,25,14分)已知抛物线G:y=mx2-2mx-3有最低点. (1)求二次函数y=mx2-2mx-3的最小值(用含m的式子表示); (2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横 坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围; (3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.,解析 (1)抛物线y=mx2-2mx-3=m(x-1)2-m-3有最低点, 二次函数y=mx2-

24、2mx-3的最小值为-m-3. (2)抛物线G:y=m(x-1)2-m-3, 平移后的抛物线G1:y=m(x-1-m)2-m-3, 抛物线G1的顶点坐标为(m+1,-m-3), x=m+1,y=-m-3, x+y=m+1-m-3=-2, 即x+y=-2,变形得y=-x-2, 抛物线G:y=mx2-2mx-3有最低点, m0, x=m+1, x1, y与x的函数关系式为y=-x-2(x1).,(3)函数H:y=-x-2(x1)的图象如图, x=2时,y=-2-2=-4, 函数H的图象过点B(2,-4), 抛物线G:y=m(x-1)2-m-3, x=2时,y=m-m-3=-3, 抛物线G恒过点A(

25、2,-3), 由图象可知,若抛物线与函数H的图象有交点P,则yByPyA, 点P纵坐标的取值范围为-4yP-3.,一题多解 (3)联立 整理得m(x2-2x)=1-x,x1. x=2时,方程为0=-1不成立, x2,即x2-2x=x(x-2)0, m= 0, x1,1-x0,x(x-2)0,x-20, x2,1x2,yP=-x-2,-4yP-3.,思路分析 (1)用配方法求得二次函数的最小值. (2)写出抛物线G的顶点式,根据平移规律得到抛物线G1的顶点式,进而得到抛物线G1的顶点坐标(m+1,-m-3), 可得x=m+1,y=-m-3,可得x+y=-2.抛物线有最低点即开口向上,m0,可求得

26、x的取值范围. (3)求出抛物线恒过点A(2,-3),函数H的图象过点B(2,-4),由图象可知两图象交点P的纵坐标在A、B的纵坐标之间.,4.(2015茂名,23,8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息: 该产品90天内日销量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:,该产品90天内销售价格(元/件)与时间(第x天)的关系如下表:,(1)求m关于x的一次函数表达式; (2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大, 最大利润是多少? 【提示:每天利润=日销售量(销售价格-每件成本)】 (3)

27、在该产品销售过程中,共有多少天销售利润不低于5 400元,请直接写出结果.,解析 (1)m与x满足一次函数关系, 设m=kx+b(k0),将x=1,m=198;x=3,m=194代入, 得 解得 (2分) m关于x的一次函数表达式为m=-2x+200. (3分) (2)y关于x的函数表达式为 y= (4分) 当1x50时,y=-2(x-40)2+7 200, -20,当x=40时,y有最大值,最大值是7 200. 当50x90时,y=-120x+12 000, -1200,y随x增大而减小, 即当x=50时,y的值最大,最大值是6 000. (5分),综上所述,当x=40时,y的值最大,最大值

28、是7 200,即在90天内该产品第40天的销售利润最大,最大利润是7 200 元. (6分) (3)共有46天的销售利润不低于5 400元. (8分),思路分析 (1)利用待定系数法求m与x的函数关系式;(2)求出y与x之间的函数关系式,分类讨论,求出y的最 大值;(3)利用(2)的关系式,写出结果.,解题关键 正确求出函数的表达式.,5.(2018广州,24,14分)已知抛物线y=x2+mx-2m-4(m0). (1)证明:该抛物线与x轴总有两个不同的交点; (2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在P上. 试判断:无论m取何正数,P

29、是否经过y轴上某个定点.若是,求出该定点的坐标;若不是,说明理由; 若点C关于直线x=- 的对称点为点E,点D(0,1),连接BE,BD,DE,BDE的周长记为l,P的半径记为r,求 的值.,解析 (1)证明:当y=0时,x2+mx-2m-4=0, =m2-4(-2m-4)=(m+4)2, m0,(m+4)20, 方程有两个不相等的实数根,即抛物线与x轴总有两个不同的交点. (2)是.如图,设圆P经过y轴上的定点M.连接MA,BC. 当y=0时,x2+mx-2m-4=0, 解得x1=2,x2=-m-2. A(2,0),B(-m-2,0).,当x=0时,y=-2m-4, C(0,-2m-4).

30、BCO=MAO,BOC=MOA, BOCMOA, = = = , MO= AO=1. 圆P经过y轴上的定点(0,1). 连接AD,因为AB为圆P的一条弦,所以圆心P在抛物线的对称轴上, 根据抛物线与圆的对称性可知,E在圆上,连接EC. ECD=90,DE为圆P的一条直径,DE=2r.,BED=OAD,EBD=DOA=90, EBDAOD, BDBEDE=DOOAAD=12 . ED=2r,BD= r,BE= r. l=BD+BE+DE= r, = .,思路分析 (1)将根的判别式进行配方即可得到结论. (2)判断P经过y轴上除C点以外的点是不是定点,也就是判断OM的长是不是与m无关.通过MOA

31、与 BOC相似,得到对应线段成比例,求出OM=1.先说明DE是P的直径,得DE=2r,再通过EBD与AOD 相似,可把BD、BE用r表示出来,则EBD的周长也可用r表示出来,最后求出 .,6.(2017深圳,23,9分)如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C. (1)求抛物线的解析式(用一般式表示); (2)点D为y轴右侧抛物线上一点,是否存在点D,使SABD= SABC,若存在,请直接给出点D的坐标;若不存在,请 说明理由; (3)将直线BC绕点B顺时针旋转45得到BE,与抛物线交于另一点E,求BE的长.,解析 (1)由题意得 解得 y=- x2+

32、x+2. (2)依题意知AB=5,OC=2, SABC= ABOC= 52=5, SABD= SABC,SABD= 5= . 设D (m0). SABD= AB|yD|= , 5 = , 解得m=1或m=2或m=-2(舍去)或m=5,D1(1,3),D2(2,3),D3(5,-3). (3)过点C作CFBC,交BE于点F,过点F作y轴的垂线,交y轴于点H, CBF=45,BCF=90,CF=CB, BCF=90,FHC=90, HCF+BCO=90,HCF+HFC=90, HFC=BCO, ,CHFBOC(AAS). HF=OC=2,HC=BO=4,F(2,6), 易求得直线BF:y=-3x+

33、12, 联立 解得 故E(5,-3). BE= = .,一题多解 (3)如图,设直线AC与直线BE交于点F,过F作FMx轴于点M, AO=1,OC=2,OB=4,AB=5, AC= = ,BC= =2 , AC2+BC2=AB2, ABC为直角三角形,即BCAC, 由题意可知FBC=45,CFB=45, CF=BC=2 , COFM, = ,即 = ,解得OM=2, = ,即 = , 解得FM=6,F(2,6), 设直线BE的解析式为y=kx+m,则 解得 直线BE的解析式为y=-3x+12, 联立直线BE和抛物线的解析式 解得 或,E(5,-3), BE= = .,考点一 二次函数的图象与性

34、质,B组 20152019年全国中考题组,1.(2019四川成都,10,3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是 ( ) A.c0 B.b2-4ac0 C.a-b+c0 D.图象的对称轴是直线x=3,答案 D 抛物线与y轴的正半轴相交,所以c0;抛物线与x轴有两个交点,所以b2-4ac0;当x=-1时,y=a-b+c, 由题图可知a-b+c0,所以选项A,B,C错误,抛物线的对称轴为直线x= =3,选项D正确,故选D.,2.(2019辽宁大连,10,3分)如图,抛物线y=- x2+ x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛

35、物线上, 且CDAB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与抛物线交于P,Q两点,则线段PQ的长为 ( ) A.3 B.1+ C.4 D.2,答案 D 在y=- x2+ x+2中,令x=0,则y=2,C(0,2);令y=0,则- x2+ x+2=0,解得x=-2或4,A(-2,0).CD AB,点D的纵坐标和点C的纵坐标相同,为2,令y=2,则- x2+ x+2=2,解得x=0或2,D(2,2).设直线AD的解析 式为y=kx+b(k0),将(-2,0),(2,2)代入y=kx+b中,得 解得 直线AD的解析式为y= x+1,令y= x+1中的x=0,则y=1,E(0,1).令-

36、 x2+ x+2=1,即x2-2x-4=0,解得x=1 ,所以PQ=(1+ )-(1- )=2 ,故选 D.,思路分析 根据抛物线的解析式求出其与x轴的交点A,与y轴的交点C的坐标,因为CDAB,所以点D的纵坐 标和点C的纵坐标相同,将点D的纵坐标代入抛物线解析式中,从而求出点D的坐标.利用待定系数法求直线 AD的解析式,并进一步求出点E的坐标,将点E的纵坐标代入抛物线的解析式中,求出点P、Q的横坐标,进而 可求出PQ的长.,3.(2018湖北黄冈,6,3分)当axa+1时,函数y=x2-2x+1的最小值为1,则a的值为 ( ) A.-1 B.2 C.0或2 D.-1或2,答案 D y=x2-

37、2x+1=(x-1)2,当a1时,函数y=x2-2x+1在axa+1内,y随x的增大而增大,其最小值为a2-2a+1, 则a2-2a+1=1,解得a=2或a=0(舍去);当a+11,即a0时,函数y=x2-2x+1在axa+1内,y随x的增大而减小,其 最小值为(a+1)2-2(a+1)+1=a2,则a2=1,解得a=-1或a=1(舍去).当0a1时,函数y=x2-2x+1在x=1处取得最小值,最 小值为0,不合题意.综上,a的值为-1或2,故选D.,4.(2019安徽,14,5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax的图象相交于P, Q两点.若平移

38、直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是 .,答案 a1或a-1,解析 解法一:函数y=x2-2ax的图象与x轴的交点为(0,0),(2a,0),函数y=x-a+1的图象与x轴的交点为(a-1,0),与y 轴的交点为(0,1-a). 分两种情况:当a2a,可得a0时,如图(2),要满足题意,则需a-10,可得a1. 综上,实数a的取值范围是a1或a-1.,令y=x-a+10时,解得00时,若 有解,则a-10,解得a1; 当a1或a-1.,解法二:直线l分别与函数y=x-a+1和y=x2-2ax的图象相交于P、Q两点,且都在x轴的下方,思路分析 考虑到二次函数图象的对称轴方程是

39、x=a,故分a0两种情况,解法一:由于二次函数的图 象过原点,结合图象知只需满足直线y=x-a+1与二次函数图象相交的最左边交点在x轴的下方即可,从而得出 关于a的不等式;解法二:分别在a0两种情况下满足 有解,解之即可.,难点突破 根据二次函数图象的特点分a0两种情况考虑是解答本题的突破口.,5.(2017新疆乌鲁木齐,15,4分)如图,抛物线y=ax2+bx+c过点(-1,0),且对称轴为直线x=1,有下列结论: abc0; 抛物线经过点(4,y1)与点(-3,y2),则y1y2; 无论a,b,c取何值,抛物线都经过同一个点 ; am2+bm+a0. 其中所有正确的结论是 .,答案 ,解析

40、 因为图象开口向上,所以a0;因为对称轴为直线x=1,所以- =1,得b=-2a0,错误; 由题图可知抛物线与x轴交于点(-1,0),且对称轴为直线x=1,抛物线与x轴的另一个交点为(3,0), 所以当x=3时,y=0,即9a+3b+c=0,所以10a+3b+c=a0,正确; 由抛物线的对称性可知,点(-3,y2)关于对称轴的对称点是(5,y2),当x1时,y随x的增大而增大,因为45,所以y1 y2,错误; 由题意知抛物线的解析式可以为y=a(x+1)(x-3)=ax2-2ax-3a,结合y=ax2+bx+c可知c=-3a,即- =3. 当x=3时,y=a32-2a3-3a=0, 所以抛物线

41、一定过点(3,0),即过点 ,正确; 因为b=-2a,所以am2+bm+a=am2-2am+a=a(m-1)20,正确. 综上所述,正确.,6.(2016河南,13,3分)已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是 .,答案 (1,4),解析 把A(0,3),B(2,3)分别代入y=-x2+bx+c中, 得 解得 抛物线的解析式为y=-x2+2x+3. y=-(x2-2x+1)+4=-(x-1)2+4,该抛物线的顶点坐标为(1,4).,考点二 二次函数与一元二次方程的联系,1.(2019贵州贵阳,10,3分)在平面直角坐标系内,已知点A(-1,0),

42、点B(1,1)都在直线y= x+ 上,若抛物线y=ax2-x +1(a0)与线段AB有两个不同的交点,则a的取值范围是 ( ) A.a-2 B.a C.1a 或a-2 D.-2a,答案 C 令ax2-x+1= x+ ,即ax2- x+ =0,若直线与抛物线有两个不同的交点,则有 -4 a0,解得a 0时, 解得a1,1a .综上所述,1a 或a-2,故选C.,解后反思 解答本题的关键是正确理解直线y= x+ 以及线段与抛物线有2个不同的交点的含义,这类问 题常常利用数形结合法进行解题.,2.(2019天津,12,3分)二次函数y=ax2+bx+c(a,b,c是常数,a0)的自变量x与函数值y的

43、部分对应值如下表:,且当x=- 时,与其对应的函数值y0.有下列结论: abc0; -2和3是关于x的方程ax2+bx+c=t的两个根; 0m+n . 其中,正确结论的个数是 ( ) A.0 B.1 C.2 D.3,答案 C 由题表可知,二次函数y=ax2+bx+c的图象过点(0,-2),(1,-2),对称轴为直线x= = ,c=-2,由题意 可知,a0,b0,正确.根据二次函数的对称性可知(-2,t)关于对称轴x= 的对称点为(3,t),即-2 和3是关于x的方程ax2+bx+c=t的两个根,正确.对称轴为直线x= ,- = ,b=-a,当x=- 时,y0, a- b-20,即 a+ a-2

44、0,a .对称轴为直线x= ,二次函数y=ax2+bx+c的图象过点(-1,m),(2,n),m =n,当x=-1时,m=a-b+c=a+a-2=2a-2,m+n=4a-4,a , 4a-4 ,错误.故选C.,方法指导 本题考查了抛物线与y轴的交点、二次函数图象与系数的关系、二次函数图象上点的坐标特 征以及二次函数的性质,逐一分析三个结论的正误是解题的关键.,3.(2016宁夏,10,3分)若二次函数y=x2-2x+m的图象与x轴有两个交点,则m的取值范围是 .,答案 m1,解析 当二次函数y=x2-2x+m的图象与x轴有两个交点时,方程x2-2x+m=0有两个不相等的实数根,所以=4- 4m

45、0,解得m1.所以m的取值范围是m1.,4.(2018湖北黄冈,22,8分)已知直线l:y=kx+1与抛物线y=x2-4x. (1)求证:直线l与该抛物线总有两个交点; (2)设直线l与该抛物线两交点为A,B,O为原点,当k=-2时,求OAB的面积.,解析 (1)证明:令x2-4x=kx+1,则x2-(4+k)x-1=0, 因为=(4+k)2+40,所以直线l与该抛物线总有两个交点. (2)设A,B的坐标分别为(x1,y1),(x2,y2),直线l与y轴的交点为C,则C点的坐标为(0,1), 易知x1+x2=4+k=2,x1x2=-1, 所以(x1-x2)2=8,所以|x1-x2|=2 , 所

46、以OAB的面积S= OC|x1-x2|= 12 = .,5.(2017新疆,23,13分)如图,抛物线y=- x2+ x+2与x轴交于点A,B,与y轴交于点C. (1)求点A,B,C的坐标; (2)将ABC绕AB中点M旋转180,得到BAD. 求点D的坐标; 判断四边形ADBC的形状,并说明理由; (3)在该抛物线对称轴上是否存在点P,使BMP与BAD相似?若存在,请直接写出所有满足条件的P点的坐 标;若不存在,请说明理由.,解析 (1)令y=- x2+ x+2=0, 解得x1=-1,x2=4, 所以点A的坐标为(-1,0),点B的坐标为(4,0), 当x=0时,y=2,所以点C的坐标为(0,

47、2). (2)过点D作DEx轴于点E, 将ABC绕AB中点M旋转180,得到BAD, AOCBED,DE=OC=2,BE=AO=1, OB=4,OE=4-1=3, 点D的坐标为(3,-2).,将ABC绕AB中点M旋转180,得到BAD, AC=BD,AD=BC, 四边形ADBC是平行四边形, AC= = ,BC= =2 ,AB=5, AC2+BC2=AB2, ACB是直角三角形,且ACB=90, 四边形ADBC是矩形. (3)点P的坐标为(1.5,1.25),(1.5,-1.25),(1.5,5)或(1.5,-5). 详解:点A的坐标为(-1,0), 点B的坐标为(4,0), 点M为AB的中点, OM=1.5,MB=2.5. 由(2)得AC=BD= ,AD=BC=2 .,当BMPADB时, = = , = ,PM=1.25, 点P的坐标为(1.5,1.25)或(1.5,-1.25). 当BMPBDA时, = = , = ,PM=5, 点P的坐标为(1.5,5)或(1.5,-5). 综上所述,点P

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 一轮复习
版权提示 | 免责声明

1,本文(2020年广东中考数学复习课件§3.4 二次函数.pptx)为本站会员(小豆芽)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|