1、递归、分治、动态规划与回溯第1页,共30页。n但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)第2页,共30页。n如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。n=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2n/
2、2T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n)第3页,共30页。n找出最优解的性质,并刻划其结构特征。n递归地定义最优值。n以自底向上的方式计算出最优值。n根据计算最优值时得到的信息,构造最优解。第4页,共30页。矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质最优子结构性质。在分析问题的最优子结构性质时,所用的方法具有普遍性:首先假设由问题的最优解导出的子问题的解不是最优的,然后再设法说明在这个假设下可构造出比原问题最优解更好的解,从而导致矛盾。利用问题的最优子结构性质,以自底向上的方式递归地从子问题的最优解
3、逐步构造出整个问题的最优解。最优子结构是问题能用动态规划算法求解的前提。注意:同一个问题可以有多种方式刻划它的最优子结构,有些表示方法的求解速度更快(空间占用小,问题的维度低)第5页,共30页。递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质子问题的重叠性质。动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项式时间,从而获得较高的解题效率。第6页,共30页。备忘录方法的控制结构与直接递归方法
4、的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。m0private static int lookupChain(int i,int j)if(mij 0)return mij;if(i=j)return 0;int u=lookupChain(i+1,j)+pi-1*pi*pj;sij=i;for(int k=i+1;k j;k+)int t=lookupChain(i,k)+lookupChain(k+1,j)+pi-1*pk*pj;if(t u)u=t;sij=k;mij=u;return u;第7页,共30页。若给定序列X=x
5、1,x2,xm,则另一序列Z=z1,z2,zk,是X的子序列是指存在一个严格递增下标序列i1,i2,ik使得对于所有j=1,2,k有:zj=xij。例如,序列Z=B,C,D,B是序列X=A,B,C,B,D,A,B的子序列,相应的递增下标序列为2,3,5,7。给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列公共子序列。给定2个序列X=x1,x2,xm和Y=y1,y2,yn,找出X和Y的最长公共子序列。第8页,共30页。设序列X=x1,x2,xm和Y=y1,y2,yn的最长公共子序列为Z=z1,z2,zk,则(1)若xm=yn,则zk=xm=yn,且zk
6、-1是xm-1和yn-1的最长公共子序列。(2)若xmyn且zkxm,则Z是xm-1和Y的最长公共子序列。(3)若xmyn且zkyn,则Z是X和yn-1的最长公共子序列。由此可见,2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。因此,最长公共子序列问题具有最优子结构性质最优子结构性质。第9页,共30页。由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系。用cij记录序列和的最长公共子序列的长度。其中,Xi=x1,x2,xi;Yj=y1,y2,yj。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时Cij=0。其他情况下,由最优子结构性质可建立递归关系如下
7、:jijiyxjiyxjijijicjicjicjic;0,;0,0,01,1max1 110第10页,共30页。由于在所考虑的子问题空间中,总共有(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。Algorithm lcsLength(x,y,b)1:mx.length-1;2:ny.length-1;3:ci0=0;c0i=0;4:for(int i=1;i=m;i+)5:for(int j=1;j=cij-1)10:cij=ci-1j;11:bij=2;12:else 13:cij=cij-1;14:bij=3;构造最长公共子序列构造最长公共子序列Algo
8、rithm lcs(int i,int j,char x,int b)if(i=0|j=0)return;if(bij=1)lcs(i-1,j-1,x,b);System.out.print(xi);else if(bij=2)lcs(i-1,j,x,b);else lcs(i,j-1,x,b);第11页,共30页。在算法lcsLength和lcs中,可进一步将数组b省去。事实上,数组元素cij的值仅由ci-1j-1,ci-1j和cij-1这3个数组元素的值所确定。对于给定的数组元素cij,可以不借助于数组b而仅借助于c本身在时间内确定cij的值是由ci-1j-1,ci-1j和cij-1中哪一
9、个值所确定的。如果只需要计算最长公共子序列的长度,则算法的空间需求可大大减少。事实上,在计算cij时,只用到数组c的第i行和第i-1行。因此,用2行的数组空间就可以计算出最长公共子序列的长度。进一步的分析还可将空间需求减至O(min(m,n)。第12页,共30页。niiixv1maxnixCxwiniii1,1,01给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?0-1背包问题是一个特殊的整数规划问题。第13页,共30页。设所给0-1背包问题的子问题nikkkxvmaxnkixjxwknikkk,1,0的最优值
10、为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式如下。iiiiwjwjjimvwjimjimjim0),1(),1(),1(max),(nnnwjwjvjnm00),(算法复杂度分析:算法复杂度分析:从m(i,j)的递归式容易看出,算法需要O(nc)计算时间。当背包容量c很大时,算法需要的计算时间较多。例如,当c2n时,算法需要(n2n)计算时间。第14页,共30页。(1)单个矩阵是完全加括号的;(2)矩阵连乘积 是完全加括号的,则 可 表示为2个完全加括号的矩阵连乘积 和 的乘
11、积并加括号,即 AABC)(BCADCBA,1050A4010B3040C530D)(DBCA)(DCAB)(DBCA)(CDBA)(CDAB16000,10500,36000,87500,34500u完全加括号的矩阵连乘积可递归地定义为:u设有四个矩阵 ,它们的维数分别是:u总共有五中完全加括号的方式第15页,共30页。n给定n个矩阵 ,其中 与 是可乘的,。考察这n个矩阵的连乘积 n由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。n若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的
12、标准算法计算出矩阵连乘积,.,21nAAAiA1iA1,.,2,1ninAAA.21第16页,共30页。给定n个矩阵A1,A2,An,其中Ai与Ai+1是可乘的,i=1,2,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。u穷举法穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。算法复杂度分析:算法复杂度分析:对于n个矩阵的连乘积,设其不同的计算次序为P(n)。由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1.Ak)(Ak+1An)可以得到关于P(n)的递推式如下:)/4()(11
13、)()(1)(2/311nnPnnknPkPnPnnk第17页,共30页。u穷举法穷举法u动态规划动态规划将矩阵连乘积 简记为Ai:j,这里ij jiiAAA.1考察计算Ai:j的最优计算次序。设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,ikj,则其相应完全加括号方式为).)(.(211jkkkiiAAAAAA计算量:Ai:k的计算量加上Ak+1:j的计算量,再加上Ai:k和Ak+1:j相乘的计算量第18页,共30页。n设计算Ai:j,1ijn,所需要的最少数乘次数mi,j,则原问题的最优值为m1,n n当i=j时,Ai:j=Ai,因此,mi,i=0,i=1,2,nn当ij时,n可以递
14、归地定义mi,j为:jkipppjkmkimjim1,1,这里 的维数为 iAiipp1jipppjkmkimjijimjki,1,min0,1jki 的位置只有 种可能kij 第19页,共30页。n对于1ijn不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有n由此可见,在递归计算时,许多子问题被重复计算多次许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。n用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项
15、式时间的算法)(22nnn第20页,共30页。public static void matrixChain(int p,int m,int s)int n=p.length-1;for(int i=1;i=n;i+)mii=0;for(int r=2;r=n;r+)for(int i=1;i=n-r+1;i+)int j=i+r-1;mij=mi+1j+pi-1*pi*pj;sij=i;for(int k=i+1;k j;k+)int t=mik+mk+1j+pi-1*pk*pj;if(t mij)mij=t;sij=k;A1A2A3A4A5A6303535151555101020202511
16、3752010350437555427125205351000262554 3213000201535250005322min52541531521pppmmpppmmpppmmm算法复杂度分析:算法复杂度分析:算法matrixChain的主要计算量取决于算法中对r,i和k的3重循环。循环体内的计算量为O(1),而3重循环的总次数为O(n3)。因此算法的计算时间上界为O(n3)。算法所占用的空间显然为O(n2)。第21页,共30页。n特征:计算Ai:j的最优次序所包含的计算矩阵子链 Ai:k和Ak+1:j的次序也是最优的。n矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子
17、结构性质最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。第22页,共30页。用多边形顶点的逆时针序列表示凸多边形,即P=v0,v1,vn-1表示具有n条边的凸多边形。若vi与vj是多边形上不相邻的2个顶点,则线段vivj称为多边形的一条弦。弦将多边形分割成2个多边形vi,vi+1,vj和vj,vj+1,vi。多边形的三角剖分多边形的三角剖分是将多边形分割成互不相交的三角形的弦的集合T。给定凸多边形P,以及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得即该三角剖分中诸三角形上权之和为最小。第23页,共30页。一个表达式的完全加括号方
18、式相应于一棵完全二叉树,称为表达式的语法树。例如,完全加括号的矩阵连乘积(A1(A2A3)(A4(A5A6)所相应的语法树如图(a)所示。凸多边形v0,v1,vn-1的三角剖分也可以用语法树表示。例如,图(b)中凸多边形的三角剖分可用图(a)所示的语法树表示。矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。三角剖分中的一条弦vivj,ij,对应于矩阵连乘积Ai+1:j。第24页,共30页。凸多边形的最优三角剖分问题有最优子结构性质。事实上,若凸(n+1)边形P=v0,v1,vn-1的最优三角剖分T包含三角形v0vkvn,1kn-1,则T的权为3个部分权的和:三角形v0v
19、kvn的权,子多边形v0,v1,vk和vk,vk+1,vn的权之和。可以断言,由T所确定的这2个子多边形的三角剖分也是最优的。因为若有v0,v1,vk或vk,vk+1,vn的更小权的三角剖分将导致T不是最优三角剖分的矛盾。第25页,共30页。定义tij,1ijn为凸子多边形vi-1,vi,vj的最优三角剖分所对应的权函数值,即其最优值。为方便起见,设退化的多边形vi-1,vi具有权值0。据此定义,要计算的凸(n+1)边形P的最优权值为t1n。tij的值可以利用最优子结构性质递归地计算。当j-i1时,凸子多边形至少有3个顶点。由最优子结构性质,tij的值应为tik的值加上tk+1j的值,再加上三
20、角形vi-1vkvj的权值,其中ikj-1。由于在计算时还不知道k的确切位置,而k的所有可能位置只有j-i个,因此可以在这j-i个位置中选出使tij值达到最小的位置。由此,tij可递归地定义为:jijivvvwjktkitjitjkijki)(1min01第26页,共30页。多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。游戏第1步,将一条边删除。随后n-1步按以下方式操作:(1)选择一条边E以及由E连接着的2个顶点V1和V2;(2)用一个新的顶点取代边E以及由E连接着的2个顶点V1
21、和V2。将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶点。最后,所有边都被删除,游戏结束。游戏的得分就是所剩顶点上的整数值。问题:对于给定的多边形,计算最高得分。第27页,共30页。在所给多边形中,从顶点i(1in)开始,长度为j(链中有j个顶点)的顺时针链p(i,j)可表示为vi,opi+1,vi+j-1。如果这条链的最后一次合并运算在opi+s处发生(1sj-1),则可在opi+s处将链分割为2个子链p(i,s)和p(i+s,j-s)。设m1是对子链p(i,s)的任意一种合并方式得到的值,而a和b分别是在所有可能的合并中得到的最小值和最大值。m2是p(i+s,j-s)的任意一
22、种合并方式得到的值,而c和d分别是在所有可能的合并中得到的最小值和最大值。依此定义有am1b,cm2d(1)当opi+s=+时,显然有a+cmb+d(2)当opi+s=*时,有minac,ad,bc,bdmmaxac,ad,bc,bd 换句话说,主链的最大值和最小值可由子链的最大值和最小值得到。第28页,共30页。在一块电路板的上、下2端分别有n个接线柱。根据电路设计,要求用导线(i,(i)将上端接线柱与下端接线柱相连,如图所示。其中(i)是1,2,n的一个排列。导线(i,(i)称为该电路板上的第i条连线。对于任何1i(j)。电路布线问题要确定将哪些连线安排在第一层上,使得该层上有尽可能多的连
23、线。换句话说,该问题要求确定导线集Nets=(i,(i),1in的最大不相交子集。第29页,共30页。记 。N(i,j)的最大不相交子集为MNS(i,j)。Size(i,j)=|MNS(i,j)|。(1)当i=1时,(2)当i1时,2.1 j(i)。此时,。故在这种情况下,N(i,j)=N(i-1,j),从而Size(i,j)=Size(i-1,j)。2.2 j(i),(i,(i)MNS(i,j)。则对任意(t,(t)MNS(i,j)有ti且(t)(i)。在这种情况下MNS(i,j)-(i,(i)是N(i-1,(i)-1)的最大不相交子集。2.3 若 ,则对任意(t,(t)MNS(i,j)有 t1时)1(1)1(0),1(jjjSize)()(1)1)(,1(),1(max),1(),(ijijiiSizejiSizejiSizejiSize第30页,共30页。