小升初之数论篇.doc

上传人(卖家):实用文档 文档编号:378113 上传时间:2020-03-17 格式:DOC 页数:17 大小:113KB
下载 相关 举报
小升初之数论篇.doc_第1页
第1页 / 共17页
小升初之数论篇.doc_第2页
第2页 / 共17页
小升初之数论篇.doc_第3页
第3页 / 共17页
小升初之数论篇.doc_第4页
第4页 / 共17页
小升初之数论篇.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、小升初之数论篇数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数(1)数的奇偶性奇数+奇数=偶数            奇数+偶数=奇数             偶数+偶数=偶数奇数个奇数相加=奇数     偶数个奇数相加=偶数奇数奇数=奇数            

2、;偶数偶数=偶数             奇数偶数=偶数只要式子中含有偶数,那么相乘结果就是偶数(2)数的整除,常见的数的整除特征2:个位是偶数3:各个数位之和是3的倍数5:个位是 0和54、25:后两位可以被4(25)整除8、125:后三位可以被8(125)整除9:各个数位之和是9的倍数7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。例如,判断133是否7的倍数的过程如下:13327,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:61392595 , 595249,所

3、以6139是7的倍数。11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数。13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除。17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。(3)余数的性质1.余数的可加性:和的余数等于余数的和。2.余数的可减性:差的余数等于余数的差。3.余数的可乘性:积得余数等于余数的积。4.同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除。对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。小

4、试牛刀1   (05年人大附中考题)有_个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。                                        2  (05年101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是。      

5、                             3  (05年首师附中考题)+=。               4  (04年人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲甲=乙+乙=丙135那么甲最小是_。5 (02年人大附中考题)下列数不是八进制数的是(           &n

6、bsp;)A、125  B、126  C、127  D、128                                          【附答案】1    【解】:62    【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9(10a+b),所以我们可以知道5a=4b,所以a=

7、4,b=5,所以原来的两位数为45。3    【解】:周期性数字,每个数约分后为+=14    【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5333,所以丙最小应该是2253,所以甲最小是:2335=90。5    【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。四、典型例题解析1  数的整除【例1】()将4个不同的数字排在一起,可以组成24个不同的四位数(4321=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个

8、是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这24个四位数中最大的一个。【解】:不妨设这4个数字分别是a>b>c>d那么从小到大的第5个就是dacb,它是5的倍数,因此b=0或5,注意到b>c>d,所以b=5;从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c是偶数,cb=5,c=4或2从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4;因为a>b,所以a至少是6,那么d最小是2,所以c就只能是4。而如果d=2,那么abdc的末2位是24,它是4的倍数,和

9、条件矛盾。因此d=3,从而a=d+4=3+4=7。这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3所以这24个四位数中最大的一个是7543。【例2】()一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?思路:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入手【解】:5位数数字和最大的为95=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条

10、件。【例3】()由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【解】:各位数字和为1+3+4+5+7+8=28所以偶数位和奇数位上数字和均为14为了使得该数最大,首位必须是8,第2位是7,14-8=6那么第3位一定是5,第5位为1该数最大为875413。拓展:一个三位数,它由0,1,2,7,8组成,且它能被9整除,问满足条件的总共有几个? 【例4】()一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7 ,女同学的人数超过总数的2/5 。问男女生各多少人?            

11、     【来源】:06年理工附入学测试题【解】:男生超过总数的4/7就是说女生少个总数的3/7,这样女生的范围在2/53/7之间,同理可得男生在4/73/5之间,这样把分数扩大,我们可得女生人数在28/7030/70之间,所以只能是29人,这样男生为41人。2   质数与合数(分解质因数)                                   【例5】()20056843

12、75最后4位都是0,请问里最小是几?【解】:先分析123410的积的末尾共有多少个0。由于分解出2的个数比5多,这样我们可以得出就看所有数字中能分解出多少个5这个质因数。而能分解出5的一定是5的倍数。注意:5的倍数能分解一个5,25的倍数分解出2个5,125的倍数能分解出3个5最终转化成计数问题,如5的倍数有10/5=2个。2005=5401    684=22171       375=3555前三个数里有2个质因子2,4个质因子5,要使得乘积的最后4位都是0应该有4个质因子2和4个质因子5,还差2个质因子。因此里最小是4。拓展:200568

13、4375最后4位都是0,且是7的倍数,问里最小是_【例6】()03 年101中学招生人数是一个平方数,04年由于信息发布及时,04年的招生人数比03年多了101人,也是一个平方数,问04年的招生人数?【解】:看见两个平方数,发现跟平方差相关,这样我们大胆的设03年的为A,04年的为B,从中我们发现04年的比03年多101人,这样我们可以列式子B- A=101此后思路要很顺,因为看见平方差只有一种方法那就是按公式展开,所以B- A=(A+B)(A-B)=101,可见右边的数也要分成2个数的积,还得考虑同奇偶性,但101是个质数,所以101只能分成1011,这样A+B=101,A-B=1,所以A=

14、50,B=51,所以04年的招生人数为5151=2601。拓展:一个数加上10,减去10都是平方数,问这个数为多少?(清华附中测试题)3  约数和倍数【例7】()从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?【解】:边长是2002和847的最大公约数,可用辗转相除法求得 (2002,847)=77所以最后剪得的正方形的边长是77毫米。辗转相除示例:2002847=2308       &

15、nbsp;      求2个数的最大公约数,就用大数除以小数847308=2231               用上一个式子的除数除以余数一直除到除尽为止308231=177                用上一个式子的除数除以余数一直除到除尽为止23177=3                     最后一个除尽的式

16、子的除数就是两个数的最大公约数【例8】()一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?【解】:100能被5整除,所以每5米作标记线从左往右还是从右往左都是一样的。这样我们都以从左往右作,可见转化成讨论5,6的最小公倍数中的情况,画图可得有2根距离为4米,所以30,60,90里各有2条,但发现最后96和100也是距离4米,所以总共23+1=7。拓展:在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【例9】(

17、)1、2、3、42008这2008个数的最小公倍数等与多少个2与一个奇数的积? 【解】:最小公倍数就是分解质因数中共有的最多因数,这样我们发现除2以外都是奇数质因数,可见我们只要找需要多少个2,所以只要看12008中2n谁最大,可见210=1024,所以为10 个2。【例10】()有15位同学,每位同学都有编号,它们是1号到15号。1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,依次下去,每位同学都说,这个数能被他的编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果

18、告诉你,1号写的数是五位数,请求出这个数。(写出解题过程)【解】:1)首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对。不然,其中说的不对的编号乘以2后所有编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合。因此,这个数能被2,3,4,5,6,7都整除。其次利用整除性质可知,这个数也能被25,34,27都整除,即编号为10,12,14的同学说的也对。从而可以断定说的不对的编号只能是8和9。2)这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数由于上述十二个数的最小公倍数是60060因为60060是一个五位数,而十二个数的其他公倍数均不是五位数

19、,所以1号同学写的数就是60060。4  数论的综合题型【例11】()某住宅区有12家住户,他们的门牌号分别是1,2,,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?【解】:设第一户电话号是x+1,第二户x+2,.第12户电话号x+12根据条件得x+i是i的倍数(i=1,2,12)因此x是1,2,.12的公倍数1,2,.12=27720所以x=27720m27720m+9是13的倍数,27720除以13余数为4所以4m+9是1

20、3的倍数m=1,14,27.第一家电话号码是27720m+1  m取14合适;因此第一家电话号码是27720*14+1=388081拓展:写出连续的11个自然数,要求第1个是2的倍数,第二个是3的倍数第11个是12的倍数?【例12】()有15位同学,每位同学都有编号,它们是1号到15号。1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,依次下去,每位同学都说,这个数能被他的编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这

21、个数。(写出解题过程)【解】:1)首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对。不然,其中说的不对的编号乘以2后所有编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合。因此,这个数能被2,3,4,5,6,7都整除。其次利用整除性质可知,这个数也能被25,34,27都整除,即编号为10,12,14的同学说的也对。从而可以断定说的不对的编号只能是8和9。2)这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数由于上述十二个数的最小公倍数是60060因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060。

22、小结本讲主要接触到以下几种典型题型:1)数的整除。               参见例1,2,3,42)质数与合数(分解质因数)。参见例5,63)约数和倍数。             参见例7,8,9,104)数论的综合题型。         参见例11,12作业题                      (注:作业

23、题-例题类型对照表,供参考)题1,4类型1;题2,6类型3;题3,5,8类型2;题7类型21()在1100这100个自然数中,所有不能被9整除的数的和是多少?解:1+2+100=5050    9+18+27+99=9(1+2+11)=495随意1-100中所有不能被9整除的数的和是5050-495=45552()某班学生不超过60人,在一次数学测验中,分数不低于90分的人数占,得8089分的人数占,得7079分得人数占,那么得70分以下的有_人。解:有、,说明总人数一定为7的倍数、2的倍数、3的倍数,故为7、2、342的倍数;又由于人数不超过60人,故这班的人数只能为42

24、人。从而70分以下的有:421人。3()自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有_个。解:枚举法:23,37,53,73,有4个4. ()三个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除,那么这样的三个自然数的和的最小值是多少?解:这三个自然数最小是6,10,15(分别是23,25,35)和的最小值为31。5、()五个连续偶数之和是完全平方数,中间三个偶数之和是立方数(即一个整数的三次方),这样一组数中的最大数的最小值是多少?解:设中间一个数为2x那么5个数的和为10x=m2中间3个数的和为6x=n3设x=2

25、p 3q 5r再根据一个数是完全平方数等价于它的各个质因子的幂都是偶数,一个数是立方数等价于他的各个质因子的幂都是3的倍数可以求得p=5,q=2,r=3X=36000因此所求为2x+4=720046、()一个数减去100是一个平方数,减去63也是一个平方数,问这个是多少?解:A-B=(A+B)(A-B)=37=371,考虑同奇偶性,可知A=19,B=18,这样这个数为461。7、()从左向右编号为1至1991号的1991名同学排成一行从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右

26、1至1l报数,报到11的同学留下,其余同学出列那么最后留下的同学中,从左边数第一个人的最初编号是_【来源】北京市第七届“迎春杯”决赛第二题第4题【解】第一次报数后留下的同学,他们最初编号都是11的倍数;第二次报数后留下的同学,他们最初编号都是=121的倍数;第三次报数后留下的同学,他们最初编号都是=1331的倍数因此,第三次报数后留下的同学中,从左边数第一个人的最初编号是13318、()有1997个奇数,它们的和等于它们的乘积其中只有三个数不是l,而是三个不同的质数那么,这样的三个质数可以是     、     、      【解】设a、b、c为三个不同的质数,根据题意    1994+a+b+C=abc    取a=3,b=5,得1994+3+5+c=15c,解出c=143不是质数;    取a=3,b=7,得1994+3+7+c=21c,解出c=不是整数;    取a=5,b=7,得1994+5+7+c=35C,解出c=59    故5、7、59是满足题意的三个质数17

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学 > 数学 > 小升初专区 > 小升初复习资料
版权提示 | 免责声明

1,本文(小升初之数论篇.doc)为本站会员(实用文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|