1、1.1.直线方程的一般式直线方程的一般式为为:_2.2.圆的标准方程为:圆的标准方程为:_3.3.圆的一般方程:圆的一般方程:_ 圆心为圆心为_)2,2(EDFED42122半径为半径为_Ax+By+C=0(A,BAx+By+C=0(A,B不同时为零不同时为零)(x-a)(x-a)2 2+(y-b)+(y-b)2 2=r=r2 2x x2 2+y+y2 2+Dx+Ey+F=0(+Dx+Ey+F=0(其中其中D D2 2+E+E2 2-4F0)-4F0)圆心为圆心为 半径为半径为(a a,b)b)r r知识回顾知识回顾:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西7
2、0km处,受影响的范围是半径长为30km的圆形区域。已知港口位于台风中心正北40km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?引入问题引入问题:.xOy港口港口.轮船轮船 你知道直线和圆你知道直线和圆的位置关系有几种?的位置关系有几种?xy0探究一:探究一:1.直线和圆的位置关系有三种(从直线与圆公共点的个数)2.用图形表示如下:.o.oll相切相交切线切点割线.没有公共点有一个公共点有两个公共点.ol相离交交点点你能用这种方法解决上述引例中的问题吗?1)1)直线和圆相交直线和圆相交d d r;r;2)2)直线和圆相切直线和圆相切3)3)直线和圆相离直线和圆相离d d r;r;直
3、线与直线与圆圆的位置关系的位置关系量化量化d d r r;如图如图,圆心圆心O O到直线的到直线的距离距离d d与与O O的半径的半径r r的大小有什么的大小有什么关系关系?探究二:探究二:OO相交相交O相切相切相离相离rrrddd直线与圆的位置关系的判断方法直线与圆的位置关系的判断方法:一般地一般地,已知直线已知直线Ax+By+C=0(A,BAx+By+C=0(A,B不同时为零不同时为零)和圆和圆(x-a)(x-a)2 2+(y-b)+(y-b)2 2=r=r2 2,则圆心则圆心(a,b)(a,b)到此直线到此直线的距离为的距离为22|BACBbAad则OO相交相交O相切相切相离相离rrrd
4、ddd d r r;例例1判断下列各直线与圆的位置关系:30 xy22(1)(1)9xy;直线,圆350 xy22100 xyy 直线,圆22(1)(1)9xy解解 由方程 知,3r(11)C,圆心为 圆C的半径圆心C到直线30 xy 的距离为 221 133 2211d,dr由于,故直线与圆相交 典型例题:典型例题:例例1判断下列各直线与圆的位置关系:30 xy22(1)(1)9xy;直线 ,圆350 xy22100 xyy 直线 ,圆 将方程22100 xyy 化成圆的标准方程,得 22(5)25xy350 xy圆心C到直线 的距离为(0,5)C5r 因此,圆心 ,半径 22055031d
5、即由于dr ,所以直线与圆相交 典型例题:典型例题:试一试:教材70页第1题例例2 2、一艘轮船在沿直线返回港口的途中,接到气象台、一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西的台风预报:台风中心位于轮船正西70km70km处,受影响的处,受影响的范围是半径长为范围是半径长为30km30km的圆形区域。已知港口位于台风中的圆形区域。已知港口位于台风中心正北心正北40km40km处,如果这艘轮船不改变航线,那么它是否处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?会受到台风的影响?.xOy港口港口.轮船轮船解决问题:解决问题:.xOy港口港口.轮船轮船解解
6、建立直角坐标系如图:建立直角坐标系如图:由由 已知可得已知可得 轮船所在位置坐标轮船所在位置坐标为(为(7070,0 0),港口所在位置坐标),港口所在位置坐标为(为(0 0,4040)。)。圆心坐标为(圆心坐标为(0 0,0 0),半径为),半径为3030 轮船航线所在的直线方程为:轮船航线所在的直线方程为:028074070400700yxxy即圆心到轮船所在航线的距离为:圆心到轮船所在航线的距离为:6528074280070422d在航线相离,即台风所在圆与轮船所又6528030,30r故这艘轮船不需改变航线,不会受到台风的影响。故这艘轮船不需改变航线,不会受到台风的影响。过圆上一点的圆
7、的切线有几条?过圆上一点的圆的切线有几条?过圆外一点的圆的切线有几条?过圆外一点的圆的切线有几条?PP探究三:探究三:(1,1)P222210 xyxy 例例3 过点作圆 的切线,试求切线方程 1(1)yk x ,解解 设所求切线的斜率为k,则切线方程为 即(1)0kxyk 圆222210 xyxy 的标准方程为 22(1)(1)1xy所以圆心C(1,1),半径r=1圆心到切线的距离为 2221(1)2(1)1kkdkk ,由于圆心到切线的距离与半径相等,所以 2211k,解得 3k 13(1)yx ,3310 xy 3310 xy 即 或典型例题:典型例题:如何判定直线与圆的位置关系?如何判
8、定直线与圆的位置关系?直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别:(1)dr:直线与圆相离;(2)dr:直线与圆相切;(3)dr:直线与圆相交 编后语 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。一、听理科课重在理解基本概念和规律 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的,为什么这么安排?两个例题之间又
9、有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。二、听文科课要注重在理解中记忆 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。三、听英语课要注重实践 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活动,珍惜课堂上的每一个练习机会。2022-10-22最新中小学教学课件15thank you!2022-10-22最新中小学教学课件16