1、第九章第九章立体几何立体几何 94 直线与直线、直线与平面、平面与平面垂直的判定与性质创设情境创设情境兴趣导入兴趣导入9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质演示并画出两条相交直线垂直与两条异面直线垂直的位置关系,并回答:经过空间任意一点作与已知直线垂直的直线,能作几条?巩固知识巩固知识典型例题典型例题9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质例例1 1 如图,长方体ABCD-A1B1C1D1中,判断直线AB和DD1是否垂直 解解 AB和DD1是异面直线
2、,而BB1DD1,ABBB1,根据异面直线所成的角的定义,可知AB与DD1成直角1.ABDD因此运用知识运用知识强化练习强化练习9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质1垂直于同一条直线的两条直线是否平行?AB2在正方体中,找出与直线垂直的棱,并指出它们与直线1AA的位置关系 创设情境创设情境兴趣导入兴趣导入9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质如图所示,检验一根圆木柱和板面是否垂直工人师傅的做法是,把直角尺的一条直角边放在板面上,看曲尺的另一条直角
3、边是否和圆木柱吻合,然后把直角尺换个位置,照样再检查一次(应当注意,直角尺与板面的交线,在两次检查中不能为同一条直线)如果两次检查,圆木柱都能和直角尺的直角边完全吻合,就判定圆木柱和板面垂直动脑思考动脑思考探索新知探索新知9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质直线与平面垂直的判定方法:如果一条直线与一个平面内的两条相交直线都垂直,那如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直么这条直线与这个平面垂直 巩固知识巩固知识典型例题典型例题9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质
4、直线与直线、直线与平面、平面与平面垂直的判定与性质例例2 2 长方体ABCD-A1B1C1D1中(如图),直线AA1与平面ABCD垂直吗?为什么?解解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D都是长方形,所以AA1AB,AA1AD且AB和AD是平面ABCD内的两条相交直线由直线与平面垂直的判定定理知,直线AA1平面ABCD 动脑思考动脑思考探索新知探索新知9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质在实际生活中,我们采用如图所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用 创设情
5、境创设情境兴趣导入兴趣导入观察道路边的电线杆可以发现它们都垂直于地面,并且这些电线杆是平行的这一事实启发我们得出直线与平面垂直的性质9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质动脑思考动脑思考探索新知探索新知直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行垂直于同一个平面的两条直线互相平行 mn如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面吗?为什么?9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质巩固知识巩固知识典型例题典型例题9 9
6、4 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质例例3 3如图,AB和CD都是平面的垂线,垂足分别为B、D,A、C分的两侧,AB4 cm,CD8 cm,BD5 cm,求AC的长 别在平面解解因为AB,CD,内,ABBD,CDBD所以ABCD因为BD在平面,在平面内,过点A作AEBD,设AB与CD确定平面直线AE与CD交于点E 在直角三角形ACE中,因为AEBD5 cm,CECDDECDAB8+4=12(cm),222251213 cmAECE所以 AC 运用知识运用知识强化练习强化练习9 94 4直线与直线、直线与平面、平面与平面垂直的
7、判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质 1一根旗杆AB高8 m,它的顶端A挂两条10 m的绳子,拉紧绳子并把它们的两个下端固定在地面上的C、D两点,并使点C、D与旗杆脚B不共线,如果C、D与B的距离都是6 m,那么是否可以判定旗杆AB与地面垂直,为什么?ABC90BACPA2如图所示,在平面内,且于A,那么AC与PB是否垂直?为什么?创设情境创设情境兴趣导入兴趣导入9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质两个平面相交,如果所成的二面角是直二面角,那么称这两个平面与平面垂直,记作 互相垂直互相垂直平面画
8、表示两个互相垂直平面的图形时,一般将两个平行四边形的一组对边画成垂直的位置,可以把直立的平面画成矩形(图(1),也可以把直立的平面画成平行四边形(图(2)(2)创设情境创设情境兴趣导入兴趣导入9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质建筑工人在砌墙时,把线的一端系一个铅锤,另一端用砖压在墙壁面上(如图),观察系有铅锤的线与墙面是否紧贴(在铅锤处应有一空隙),即判断所砌墙面是否经过地面的垂线,以此保证所砌的墙面与地面垂直 动脑思考动脑思考探索新知探索新知平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直一个平
9、面经过另一个平面的垂线则两个平面垂直 ABAB,如图所示,如果在内,那么9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质巩固知识巩固知识典型例题典型例题9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质例例4 4 在正方体ABCD-A1B1C1D1(如图)中,判断平面B1AC与平面B1BDD1是否垂直 解解 在正方体ABCD-A1B1C1D1中,B1B平面ABCD,所以BB1AC,在底面正方形ABCD中,BDAC,因此AC平面BB1D1D,ACB1因为AC在平面 内,A
10、CB1所以平面 与平面 垂直 11BDDBACB1创设情境创设情境兴趣导入兴趣导入9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质1AC11A ABB1EEAB如图所示,在正方体的侧面中,作,观察1EE与底面ABCD的关系 DE1EABCA1B1C1D1动脑思考动脑思考探索新知探索新知9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质平面与平面垂直的性质:如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直如果两个平面垂直,那么一个平面内垂直于交线的直线与另
11、一个平面垂直 巩固知识巩固知识典型例题典型例题9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质例例5 5如图所示,平面平面,AC在平面内,且ACAB,BD在平面内,且BDAB,AC12 cm,AB3 cm,BD4 cm求CD的长 又由于BDAB,所以在直角三角形ABD中,222223425ADABBD故 AD5(cm)因为,AC在平面内,且ACAB,与的交线,所以ACAB为平面因此CAAD 在直角三角形ACD中,22222125169CDACAD故 CD13(cm)内,连结AD解解在平面运用知识运用知识强化练习强化练习9 94 4
12、直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质1111ABCDA B C D1AB1如图所示,在长方体中,与平面垂直的1AB垂直的棱有 条 平面有 个,与平面ABCDD 1A 1B 1C 12如图所示,检查工件相邻的两个面是否垂直时,只要用曲尺的一边卡在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了,为什么?直线与平面垂直的判定方法:如果一条直线与一个平面如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直内的两条相交直线都垂直,那么这条直线与这个平面垂直 直线和平面垂直的性质:垂直于
13、同一个平面的两条直线垂直于同一个平面的两条直线互相平行互相平行 .直线与平面垂直的判定与性质?直线与平面垂直的判定与性质?理论升华理论升华整体建构整体建构9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质学习行为学习行为 学习效果学习效果 学习方法学习方法 自我反思自我反思目标检测目标检测9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质自我反思自我反思目标检测目标检测9 94 4直线与直线、直线与平面、平面与平面垂直的判定与性质直线与直线、直线与平面、平面与平面垂直的判
14、定与性质 一根旗杆AB高8 m,它的顶端A挂两条10 m的绳子,拉紧绳子并把它们的两个下端固定在地面上的C、D两点,并使点C、D与旗杆脚B不共线,如果C、D与B的距离都是6 m,那么是否可以判定旗杆AB与地面垂直,为什么?作作 业业读书部分:读书部分:阅读教材相关章节阅读教材相关章节 实践调查:实践调查:寻找生活中的线线、寻找生活中的线线、书面作业:书面作业:教材习题教材习题9.4 A9.4 A组(必做)组(必做)教材习题教材习题9.4 B9.4 B组(选做)组(选做)线面、面面垂直的实例线面、面面垂直的实例 继续探索继续探索活动探究活动探究9 94 4直线与直线、直线与平面、平面与平面垂直的
15、判定与性质直线与直线、直线与平面、平面与平面垂直的判定与性质编后语常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?一、释疑难 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。二、补笔记 上课时,如果有些东西没有记下来,不要因为惦记着漏了
16、的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。三、课后“静思2分钟”大有学问 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的课后复习30分钟。最新中小学教学课件2022-10-22thank you!最新中小学教学课件2022-10-22