中考数学总复习题型突破数学思想方法课件湘教版.pptx

上传人(卖家):晟晟文业 文档编号:3930274 上传时间:2022-10-26 格式:PPTX 页数:69 大小:2.51MB
下载 相关 举报
中考数学总复习题型突破数学思想方法课件湘教版.pptx_第1页
第1页 / 共69页
中考数学总复习题型突破数学思想方法课件湘教版.pptx_第2页
第2页 / 共69页
中考数学总复习题型突破数学思想方法课件湘教版.pptx_第3页
第3页 / 共69页
中考数学总复习题型突破数学思想方法课件湘教版.pptx_第4页
第4页 / 共69页
中考数学总复习题型突破数学思想方法课件湘教版.pptx_第5页
第5页 / 共69页
点击查看更多>>
资源描述

1、题型突破(四)数学思想方法题型解读数学思想是指对数学知识和方法形成的规律性的认识,是解决数学问题的根本策略.数学思想揭示概念、定理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.中考中常用到的数学思想方法有整体思想、转化思想、函数与方程思想、数形结合思想、分类与整合思想等.代数与几何的综合题所涉及的数学思想往往不是单一的,很多问题中都是以数形结合思想为主线,综合考查其他思想方法的灵活运用,难度较大,在中考中的压轴题体现尤为明显.|类型1|整体思想的应用【方法点析】运用整体思想解题的关键是把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在

2、客观上寻求解决问题的新途径.整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决.|类型1|整体思想的应用|类型1|整体思想的应用|类型1|整体思想的应用|类型1|整体思想的应用|类型2|转化思想的应用【分层分析分层分析】(1)解分式方程常用的方法是解分式方程常用的方法是;(2)在方程两边同时乘可以将方程的分母去掉在方程两边同时乘可以将方程的分母去掉,得到得到的整式方程是的整式方程是;(3)解分式方程与解整式方程在过程上最典型的区别是解分式方程与解整式方程在过程上最典型的区别是.【方法点析】解分式方程的

3、基本思想是“转化思想”,把分式方程转化为整式方程求解.转化的目的是使问题化复杂为简单、化陌生为熟悉、化未知为已知,易于问题的解决,从而避免“小题大做”.通过转化得到的问题,必须与原来的问题是等价的,否则转化是无效的、得到的结果是错误的.|类型2|转化思想的应用|类型2|转化思想的应用针对训练针对训练|类型2|转化思想的应用图Z4-2|类型2|转化思想的应用|类型2|转化思想的应用|类型2|转化思想的应用4.李老师家距学校1900米,某天他步行去上班,走到一半时发现忘了带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电动车去上班.已知李老师骑电动车到学校比他步行到学校少用20

4、分钟,且骑电动车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电动车等共用4分钟.请你判断李老师能否按时上班,并说明理由.|类型3|分类讨论思想的应用图Z4-3|类型3|分类讨论思想的应用|类型3|分类讨论思想的应用针对训练针对训练1.已知等腰三角形的一条边长为4,另一条边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12答案C解析 当4为腰长时,4+4=8,故此种情况不存在;当8为腰长时,8+48,符合题意.故此三角形的周长为8+8+4=20.故选C.|类型3|分类讨论思想的应用|类型3|分类讨论思想的应用|类型3|分类讨论思想的应用4.2020聊城 如果一

5、个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.答案 180或360或540解析 如图所示,一个正方形被截掉一个角后,可能得到如下的多边形.|类型3|分类讨论思想的应用|类型4|方程思想的应用|类型4|方程思想的应用【方法点析】(1)运用方程思想解题的基本思路是从分析问题的数量关系入手,适当设定未知数,把所求解的数学问题中已知量和未知量之间的数量关系转化为方程或方程组的数学模型,从而使问题得到解决.(2)用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组).这种思想在代数、几何及实际生活中有着广泛的应用.|类型4|方程思想的应用|类型4|方程思想的应用针对

6、训练针对训练|类型4|方程思想的应用|类型4|方程思想的应用|类型4|方程思想的应用|类型4|方程思想的应用|类型4|方程思想的应用|类型4|方程思想的应用|类型4|方程思想的应用|类型4|方程思想的应用图Z4-6|类型4|方程思想的应用图Z4-6|类型4|方程思想的应用图Z4-6|类型5|函数思想的应用|类型5|函数思想的应用【方法点析】用函数变化的观点来观察、分析已知信息中的条件和结论,并借助函数表达式来思考问题.在实际生活中,许多问题都可以归结为函数这种数学模型来解决,在讨论函数的过程中往往会把函数问题转化为方程(或不等式)来解决.|类型5|函数思想的应用|类型5|函数思想的应用|类型5

7、|函数思想的应用针对训练针对训练图Z4-7|类型5|函数思想的应用|类型5|函数思想的应用图Z4-7|类型5|函数思想的应用图Z4-8|类型5|函数思想的应用|类型5|函数思想的应用图Z4-8|类型6|数形结合思想的应用图Z4-9|类型6|数形结合思想的应用|类型6|数形结合思想的应用|类型6|数形结合思想的应用【方法点析】在研究问题时把数与形结合考虑,把数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂问题简单化、抽象问题具体化.如利用数轴研究实数和不等式(组)的解集,利用统计图获取相关统计量的信息,利用图形的剪拼验证整式的一些性质,利用函数的图象研究函数的性质等.|类型6

8、|数形结合思想的应用图Z4-9|类型6|数形结合思想的应用|类型6|数形结合思想的应用图Z4-9|类型6|数形结合思想的应用(2)160-24-32-48=56(人),条形图如图所示.|类型6|数形结合思想的应用图Z4-9|类型6|数形结合思想的应用|类型6|数形结合思想的应用针对训练|类型6|数形结合思想的应用|类型6|数形结合思想的应用|类型6|数形结合思想的应用|类型6|数形结合思想的应用图Z4-13解:(1)1002=200(m).故小明出发第2 min时离家的距离为200 m.|类型6|数形结合思想的应用图Z4-13|类型6|数形结合思想的应用图Z4-13|类型6|数形结合思想的应用图Z4-14|类型6|数形结合思想的应用图Z4-14|类型6|数形结合思想的应用图Z4-15|类型6|数形结合思想的应用图Z4-15|类型6|数形结合思想的应用图Z4-16|类型6|数形结合思想的应用图Z4-16|类型6|数形结合思想的应用图Z4-16

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 一轮复习
版权提示 | 免责声明

1,本文(中考数学总复习题型突破数学思想方法课件湘教版.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|