1、27.2.1 相似三角形的判定第二十七章 相 似导入新课讲授新课当堂练习课堂小结第1课时 平行线分线段成比例1.理解相似三角形的概念.2.理解平行线分线段成比例的基本事实及其推论,掌 握相似三角形判定定理的预备定理的有关证明.(重 点、难点)3.掌握平行线分线段成比例的基本事实及其推论的应 用,会用平行线判定两个三角形相似并进行证明和 计算.(重点、难点)学习目标导入新课导入新课复习引入1.相似多边形的对应角 ,对应边 ,对 应边的比叫做 .2.如图,ABC 和 ABC 相似需要满足什么条件?相等成比例相似比ABCABC相似用符号“”表示,读作“相似于”.ABC与ABC 相似记作“ABCABC
2、”.讲授新课讲授新课平行线分线段成比例(基本事实)一 如图,小方格的边长都是1,直线 abc,分别交直线 m,n于A1,A2,A3,B1,B2,B3.合作探究A1A2A3B1B2B3mnabc图A1A2A3B1B2B3mnabc (1)计算 ,你有什么发现?12122323A AB BA AB B,(2)将 b 向下平移到如图的位置,直线 m,n 与直线 b 的交点分别为 A2,B2.你在问题(1)中发现的结 论还成立吗?如果将 b 平移到其他位置呢?A1A2A3B1B2B3mnabc图(3)根据前两问,你认为在平面上任意作三条平行线,用它们截两条直线,截得的对应线段成比例吗?一般地,我们有平
3、行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若ab c,则 ,12122323A AB BA AB B 归纳:A1A2A3B1B2B3bc23231212A AB BA AB B12121313A AB BA AB B,23231313A AB BA AB Ba1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?想一想:如图,已知l1l2l3,下列比例式中错误的是 ()A.B.C.D.DFBDCEACBFBDAEACCEDFAEBFACBDBFAED练一练ACEBDFl2l1l3 如图,直线ab c,由平行线分线段成比例的基本事实,我们可
4、以得出图中对应成比例的线段,平行线分线段成比例定理的推论二A1A2A3B1B2B3bcmna观察与思考把直线 n 向左或向右任意平移,这些线段依然成比例.A1A2A3bcmB1B2B3na 直线 n 向左平移到 B1 与A1 重合的位置,说说图中有哪些成比例线段?把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?A1(B1)A2A3B2B3()A1A2A3bcmB1B2B3na 直线 n 向左平移到 B2 与A2 重合的位置,说说图中有哪些成比例线段?把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?A2(B2)A1A3B1B3()平行于三角形一边的直线截其他两边(
5、或两边的延长线),所得的对应线段成比例.A1(B1)A2A3B2B3A2(B2)A1A3B1B3 归纳:如图,DEBC,则 ;FGBC,则 .ABAD52ACAE练一练25ABCEDFG2CGAGABAF23例1 如图,在ABC中,EFBC.(1)如果E、F分别是 AB 和 AC 上的点,AE=BE=7,FC=4 ,那么 AF 的长是多少?ABCEF典例精析解:AEAFBEFC,774AF,解得 AF=4.(2)如果AB=10,AE=6,AF=5,那么 FC 的长是多 少?ABCEF解:AEAFABAC,6510AC,解得 AC=.253 FC=ACAF=.2510533 如图,DEBC,AD
6、=4,DB=6,AE=3,则AC=;FGBC,AF=4.5,则AG=.ABCEDFG练一练7.56 如图,在ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.问题1 ADE与ABC的三个角分别相等吗?问题2 分别度量ADE与ABC的边长,它们的边 长是否对应成比例?BCADE相似三角形的引理三合作探究问题3 你认为ADE与ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?BCADE通过度量,我们发现ADEABC,且只要DEBC,这个结论恒成立.想一想:BCADE 我们通过度量三角形的边长,知道ADEABC,但要用相似的定义去证明它,我们需要证明什么?由前面的结论,
7、我们可以得到什么?还需证明什么?,而除 DE 外,其他的线段都在ABC 的边上,要想利用前面学到的结论来证明三角形相似,需要怎样做呢?BCADE 由前面的结论可得ADAEABAC,需要证明的是ADAEDEABACBC可以将 DE 平移到BC 边上去证明:在 ADE与 ABC中,A=A.DEBC,ADE=B,AED=C.如图,过点 D 作 DFAC,交 BC 于点 F.CABDEF用相似的定义证明ADEABC DEBC,DFAC,.ADAEADCFABACABCB,四边形DFCE为平行四边形,DE=FC,ADEABC.=ADAEDEABACBC,由此我们得到判定三角形相似的定理:平行于三角形一边
8、的直线与其他两边相交,所构成的三角形与原三角形相似.三角形相似的两种常见类型:“A”型“X”型 DEABCABCDE1.已知:如图,ABEFCD,图中共有_对相似 三角形.3练一练CDABEFO相似具有传递性2.若 ABC 与 ABC 相似,一组对应边的长为AB=3 cm,AB=4 cm,那么ABC与 ABC 的相似比是_.433.若 ABC 的三条边长的比为3cm,5cm,6cm,与其相似的另一个 ABC 的最小边长为12 cm,那么 ABC 的最大边长是_.24 cm当堂练习当堂练习1.如图,ABCDEF,相似比为1:2,若 BC=1,则 EF 的长为 ()A.1 B.2 C.3 D.4B
9、CAEFDB2.如图,在 ABC 中,EFBC,AE=2cm,BE=6cm,BC=4 cm,EF 长 ()AA.1cm B.cm C.3cm D.2cmABCEF433.如图,在 ABC中,DEBC,则_,对应边的比例式为 ADABAEACDEBCADEABCBCADE4.已知 ABC A1B1C1,相似比是 1:4,A1B1C1 A2B2C2,相似比是1:5,则ABC与A2B2C2的 相似比为 .1:205.如图,在 ABCD 中,EFAB,DE:EA=2:3,EF=4,求 CD 的长 解:EFAB,DE:EA=2:3,DACBEF 即DEEFADAB,DEF DAB,245AB,解得 AB=10.又 四边形 ABCD 为,CD=AB=10.6.如图,已知菱形 ABCD 内接于AEF,AE=5cm,AF=4 cm,求菱形的边长.解:四边形 ABCD 为菱形,BCADEFCDAB,.CDDFAEAF设菱形的边长为 x cm,则CD=AD=x cm,DF=(4x)cm,解得 x=菱形的边长为 cm.20.9454xx,209课堂小结课堂小结两条直线被一组平行线所截,所得的对应线段成比例 推论平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段成比例 相似三角形判定的引理平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似 基本事实平行线分线段成比例天道酬勤