1、 1 古典概型古典概型教学教学设计(教案)与教学设计说明设计(教案)与教学设计说明 一一教材分析教材分析 (一)(一)教材的地位和作用教材的地位和作用 本节课是高中数学必修 3 第三章概率的第二节古典概型的第一课 时,是在学生学习了随机事件的概率之后,几何概型之前,尚未学习 排列组合的情况下教学的。古典概型是一种特殊的数学模型,他的引 入避免了大量的重复试验,而且得到的是概率的准确值,学习它有利 于理解概率的概念,有利于解释生活中的一些问题。同时古典概型也 是后面学习几何概型、条件概率的基础,因此在教材中有着承上启下 的作用,在概率论中占有重要的地位。 (二)(二)教学教学目标目标 根据新课改
2、理念,以教材为背景,设计本节课的教学目标如下: 1 1、知识与技能知识与技能目标目标: (1)理解并掌握古典概型的概念及其概率计算公式; (2)会用列举法计算一些随机事件所含的基本事件的个数。 2 2、过程与方法过程与方法目标目标: 通过两个课前模拟实验让学生理解古典概型的特征;通过观察类 比各个试验结果让学生归纳总结出古典概型概率计算公式, 体现了化 归的重要思想;使学生掌握用列举法,及用数形结合思想和分类讨论 的思想解决概率计算问题。 3 3、情感态度与价值观情感态度与价值观目标目标: 通过古典概型这一数学模型的学习,使学生对现实生活中的一些 2 数学问题进行思考和判断,发展学生数学应用意
3、识,提高学习兴趣, 在不同的探究活动中形成锲而不舍的探究精神。 3 3. .教学重教学重点,点,难点难点 教学重点:古典概型的概念及其概率计算公式的应用; 教学难点:古典概型的概念及基本事件个数的判断. 二学情分析二学情分析 高一学生已经具备了一定的归纳、猜想能力,但在数学的应用意 识和能力方面尚需进一步培养.通过前面的学习,学生已经了解了概 率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概 率加法公式,这三者形成了学生思维的“最近发展区”.多数学生对 数学学习有一定的兴趣, 因此能够积极主动参与自主学习, 合作探究, 讨论交流,但由于学生各方面能力发展不够均衡,仍有小部分学生这
4、方面能力需要加强. 三三教法学法教法学法分析分析 结合新课改教学理念,为了更有效的实现教学目标,教学中我采 用模拟实验、制作科学小视频、自主学习、合作探究、讨论交流,分 组展示、质疑的教法和学法,尽可能的增加学生的课堂参与程度,真 正做到学生是课堂的主人,教师是课堂的组织者、设计者、引导者。 课前教师注意教学活动的设计,备好各层次学生可能出现的问题,课 堂上认真关注学生的活动,将时间、空间还给学生,注重师生交往的 有效化,做好适时引导点拨。另外,课上采用多媒体辅助教学,增强 课堂直观性,增加课堂容量。 3 四四教学过程设计教学过程设计 (一)(一)课前模拟,课前模拟,自主学习自主学习 请同学们
5、以小组为单位,以“投掷达人赛”的娱乐形式比赛完成 两个数学模拟试验 第一季:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面 朝上”的次数,要求每个数学小组至少完成 20 次(最好是整十数) , 最后由第一季达人汇总数据填入下表: (2)第二季:抛掷一枚质地均匀的骰子,分别记录“1 点” 、 “2 点” 、 “3 点” 、 “4 点” 、 “5 点”和“6 点”的次数,要求每个数学小组至少 完成 20 次(最好是整十数)最后由第二季达人汇总数据填入下表: 抛掷次数 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 出现 1 点的
6、频率 出现 2 点的频率 出现 3 点的频率 完成试验后思考: 问题问题一一: (1 1)用模拟试验的方法来求某一随机事件的概率好不好?用模拟试验的方法来求某一随机事件的概率好不好?为什么?为什么? (2 2)完成下表:)完成下表: 试验材料 实验结果 结果关系 试验一 硬币质地是均匀的 试验二 骰子质地是均匀的 师生活动:师生活动:教师创设情境,为导入新知做准备。学生感悟体验,同时 抛掷次数 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 出现正面的频数 出现正面的频率 4 利用手机拍摄试验现场, 并对以上三个问题以现场采访小组
7、成员的方 式反馈试验效果。 在课前放映, 然后上课后让试验达人进行实验总结。 设计意图:设计意图:通过两个接近于生活的模拟试验的设计,让学生体会实验 法求概率的弊端,从而引出学习古典概型的意义,而学生制作手机视 频更能激发学生的学习积极性,同时做到课堂教学的生活化。 (二二)思想交流,形成概念)思想交流,形成概念 问题问题二二: 1 1、掷硬币实验结果”正面“、 ”反面“会同时出现吗?、掷硬币实验结果”正面“、 ”反面“会同时出现吗? 掷掷骰子试骰子试 验结果”验结果”1 1 点“、 ”点“、 ”2 2 点“、点“、”6”6 点“会同时出现吗?点“会同时出现吗? 2 2、掷骰子试验中,随机事件
8、“出现奇数点”包含哪些基本事件?、掷骰子试验中,随机事件“出现奇数点”包含哪些基本事件? 3 3、基本事件有什么特点?、基本事件有什么特点? 设计意图:设计意图:通过举例,让学生结合试验结果理解基本事件的概念及特 点。让学生从问题的相同点和不同点中找出研究对象的对立统一面, 这能培养学生运用对立统一的辩证唯物主义观点来分析问题的能力。 例例 1 1 从字母, , ,a b c d中任意取出两个不同字母的试验中,有哪些基本 事件? 师生活动:师生活动:学生回答列举基本事件,老师针对列举是否有规律性进行 点评:若有,按什么规律列的,有什么好处,进行表扬;若没有,由 学生互相补充,形成对比,确认优劣
9、。 设计意图:设计意图:由于前面学生没有学习排列组合知识,因此用列举法列举 基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能 使学生在列举的时候作到不重不漏, 解决了求古典概型中基本事件总 数这一难点,同时渗透了数形结合及分类讨论的数学思想。 5 问题问题三三:你能你能总结出总结出上上述述两个两个模拟模拟试验试验中基本中基本事件的共同特点吗?事件的共同特点吗? 试验 基本事件基本事件 相相 同同 情况 个数 概率 试验一 投币 “正面朝上” “反面朝上” 2 个 每个基本事件 概率都是 1 2 试验二 掷骰 “1 点”“2 点”“3 点” “4 点”“5 点”“6 点” 6 个 每
10、个基本事件概率都是 1 6 例题 1 取字母 6 个 每个基本事件概率都是 1 6 师生师生活动活动:先让学生小组交流讨论,然后教师抽小组代表回答,并在 学生回答的基础上再进行补充 设计意图:设计意图:培养学生运用从具体到抽象、从特殊到一般的辩证唯物主 义观点分析问题的能力,充分体现了化归的重要思想。通过用表格列 出,能让学生很好的理解古典概型的两个特征,从而突出了古典概型 概念这一教学重点。 为了突破古典概型概念这一难点, 在探究古典概型计算公式之前为了突破古典概型概念这一难点, 在探究古典概型计算公式之前 设计设计了了两道概念辨析的两道概念辨析的抢答题抢答题(由多媒体展示出来)(由多媒体展
11、示出来) : (1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点 都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某选手向一靶心进行射击,这一试验的结果只有有限个: 命中 10 环、命中 9 环命中 1 环和不中环。你认为这是古典概型 吗?为什么? 设计意图:设计意图: 用多媒体展示, 以抢答形式完成, 可以调动学生的积极性, 让学生体会在竞争中学习的优势。从知识点上说,两个问题的设计是 为了让学生更加准确的把握古典概型的两个特点。 突破了如何判断一 , , a ba ca d b cb dc d 6 个试验是否是古典概型这一教学难点。 (三)观察类比(三)观察类比、推导公
12、式推导公式 问题问题四四: 1 1、掷骰子试验中,掷骰子试验中,6 6 个基本事件的概率都是个基本事件的概率都是 1 6 ,那么随机事件“出现,那么随机事件“出现 偶数点”的偶数点”的 概率是多少?为什么?概率是多少?为什么? 2 2、掷骰子试验中,随机事件、掷骰子试验中,随机事件“出现点数小于出现点数小于 6”6”的的 概率是多少?为概率是多少?为 什么?什么? 师生师生活活动:动: 师生共同讨论引导学生利用基本事件的互斥性以及互斥 时间的加法公式解释随机事件的概率, 同时给出概率与基本事件的个 数之间的关系,引导学生向古典概率公式的思考。 3 3、根据上述两则模拟试验,你能类比、根据上述两
13、则模拟试验,你能类比猜想猜想出,古典概型出,古典概型中中计算任何计算任何 事件的概率计算公式吗?事件的概率计算公式吗?能简单说明理由吗能简单说明理由吗? 师生师生活动活动:由小组讨论总结,小组代表发言,其他成员补充。老师点 评。 设计意图:设计意图:通过教师的步步追问,引导学生深层次的考虑问题,看到 问题的本质,而学生通过运用观察、比较方法猜想得出古典概型的概 率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽 象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越 性和这一做法的合理性 (四)例题分析、(四)例题分析、探究思考探究思考、巩固深化巩固深化 通过多媒体展示课本上经
14、典例题: 内容一,内容一,课本上例 2:单选题是标准化考试中常用的题型,一般是从 A、B、C、D 四个选项中选择一个正确答案。如果考生掌握了考察内 7 容,他选择唯一正确的答案。假设考生不会做,他随机的选择一个答 案,问他答对的概率是多少? 内容二,内容二,引申问题探究:假设例 2 中的单选题改为多选题,多选题是 从 A、B、C、D 四个选项中选择所有正确答案,假设考生不会做,他 随机的选择一个答案, 对于他来说是更容易了还是更难了?为什么? 师生活动及设计意图:由于学生没有学习排列组合的知识,所以让学 生明确求随机事件的基本事件的个数的方法是列举法。 培养学生运用 数形结合思想解决问题的能力
15、。对于引申题多数学生都会说更难了, 教师引导学生从概率的大小上说明问题。 列举 15 种可能出现的答案。 内容内容三三,课本上例 3: 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是 5 的结果有多少种? (3)向上的点数之和是 5 的概率是多少? 师生互动:师生互动: 小组 1:所有可能的结果是:所有可能的结果是: (1 1,1 1) () (1 1,2 2) () (1 1,3 3) () (1 1,4 4) () (1 1,5 5) () (1 1,6 6) () (2 2,2 2) () (2 2,3 3) () (2 2, 4 4) () (2 2
16、,5 5) () (2 2,6 6) () (3 3,3 3) () (3 3,4 4) () (3 3,5 5) () (3 3,6 6) () (4 4,4 4) () (4 4,5 5) (4 4,6 6) () (5 5,5 5) () (5 5,6 6) () (6 6,6 6)共有)共有 2121 种。种。 向上的点数之和为 5 的结果有 2 个,它们是(1,4) (2,3) 。 向上点数之和为 5 的结果(记为事件 A)有 2 种,因此,由古典概 型的概率计算公式可得 A2 A 21 P 所包含的基本事件的个数 ( ) 基本事件的总数 小组 2:掷一个骰子的结果有 6 种,我们把
17、两个骰子标上记号我们把两个骰子标上记号 1 1,2 2 以便区分,以便区分, 由于 1 号骰子的每一个结果都可与 2 号骰子的任意一个结 8 果配对, 组成同时掷两个骰子的一个结果, 我们可以用列表法得到 (如 图) ,其中第一个数表示 1 号骰子的结果,第二个数表示 2 号骰子的 结果。 由表中可知同时掷两个骰子的结果共有 36 种。 在上面的所有结果中, 向上的点数之和为 5 的结果有 4 种: (1, 4) , (2,3) , (3,2) , (4,1) 。 由于所有 36 种结果是等可能的, 其中向上点数之和为 5 的结果 (记 为事件 A)有 4 种,因此,由古典概型的概率计算公式可
18、得 A41 A 369 P 所包含的基本事件的个数 ( ) 基本事件的总数 师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流 讨论,教师再抽学生回答) 小组 3::答案 1 是错的,原因是其中构造的原因是其中构造的 2121 个基本事件不是等可个基本事件不是等可 能发生的,因此就不能用古典概型的概率公式求解。能发生的,因此就不能用古典概型的概率公式求解。 师:很好,我们今后用古典概型的概率公式求解时,特别要验证“每 个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误 的。同时学生 2 用列表来列举试验中的基本事件的总数,可以作到列 举的时候不重不漏,它是列举法的一种基本方
19、法。 设计意图:设计意图:这节课的重难点就是古典概型的判断,对例 3 的两种不同 (6,6)(6,5)(6,4)(6,3)(6,2)(6,1)6 (5,6)(5,5)(5,4)(5,3)(5,2)(5,1)5 (4,6)(4,5)(4,4)(4,3)(4,2)(4,1)4 (3,6)(3,5)(3,4)(3,3)(3,2)(3,1)3 (2,6)(2,5)(2,4)(2,3)(2,2)(2,1)2 (1,6)(1,5)(1,4)(1,3)(1,2)(1,1)1 654321 1号骰子号骰子 2号骰子号骰子 (6,6)(6,5)(6,4)(6,3)(6,2)(6,1)6 (5,6)(5,5)(5
20、,4)(5,3)(5,2)(5,1)5 (4,6)(4,5)(4,4)(4,3)(4,2)(4,1)4 (3,6)(3,5)(3,4)(3,3)(3,2)(3,1)3 (2,6)(2,5)(2,4)(2,3)(2,2)(2,1)2 (1,6)(1,5)(1,4)(1,3)(1,2)(1,1)1 654321 1号骰子号骰子 2号骰子号骰子 (6,6)(6,5)(6,4)(6,3)(6,2)(6,1)6 (5,6)(5,5)(5,4)(5,3)(5,2)(5,1)5 (4,6)(4,5)(4,4)(4,3)(4,2)(4,1)4 (3,6)(3,5)(3,4)(3,3)(3,2)(3,1)3 (
21、2,6)(2,5)(2,4)(2,3)(2,2)(2,1)2 (1,6)(1,5)(1,4)(1,3)(1,2)(1,1)1 654321 1号骰子号骰子 2号骰子号骰子 9 的意见进行对比分析,形成强烈的概念冲击,这是突破难点的契机. 上述问题的设计,让学生感受到数学模型的生活化,能用所学知识解 决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有 极大的成就感,才能体验到数学学习的真谛。 (五五)总结概括)总结概括、享受成功享受成功 1、根据两例题,师生共同总结解题步骤: (1)判断是否为古典概型,如果是,准确求出基本事件总个数 n; (2)求出事件 A 包含的基本事件个数 m.
22、(3)P(A)=m/n 设计意图:设计意图:师生共同总结,展示本节课的学习成果,增强学生学习的 成就感,享受成功的喜悦 2 2、课堂小结:课堂小结: 本节课你学习到了哪些知识? 本节课哪个问题或者哪个环节让你感受最深? 设计意图设计意图: :让学生自己小结,不仅仅总结知识,特别是第二个问题, 通过学生对本节课的切身体会,谈感受,更重要的是谈出对问题的想 法,谈数学思想方法。是一个高层次的自我认识过程,这样可帮助学 生自行构建知识体系,理清知识脉络,养成良好的学习习惯。 3 3、课后作业:课后作业: (必做)课本 130 页练习第 1,2 题 (选做) 网上查阅历史上掷硬币达人,了解有关“古典概
23、型”的历史 设计意图:设计意图:作业设计的多样性,可以满足每个学生对本节课的不同层 次需求,使每个学生对本节课的学习既有成就感,又有挑战感。 10 五、五、板书设计板书设计 六六教学问题诊断分析教学问题诊断分析 预想到我校学生在学习中可能存在以下问题。 (1)在课本例 2 和例 3 的教学中,学生往往不会讨论这个问题该在 什么情况下可以看成古典概型,往往会忽视古典概型的两个特征,错 用古典概型概率计算公式。 因此在教学中教师始终抓住掷硬币和掷骰 子两个经典的古典概型作为背景进行教学,让学生结合实例观察、验 证某个试验是否满足古典概型的两个特征, 从而突破本节课的教学重 难点。 (2)在探究一、
24、二的学习中,求古典概型中基本事件总数是难点, 原因是学生前面没有学习排列组合知识, 此时教师可引导学生用列举 法列举出基本事件,再确定其个数,这不仅能让学生直观的感受到对 象的总数,而且还能提醒学生在列举的时候作到不重不漏,突破本节 课的另一个难点。 七七、教学评价反思教学评价反思 结合新课程改革的教学理念,学生是学习的主体,他们的学习一 定要亲身经历才会印象深刻,在学习的过程中,教师要尽可能地创设 3.2.13.2.1 古典概型古典概型 1.1.基本事件:基本事件: 互斥互斥 任何事件(处不可能事件)都可表示成任何事件(处不可能事件)都可表示成 基本事件的和基本事件的和 2.2.古典概型古典
25、概型 有限性;有限性; 等可能性。等可能性。 3.3.古典概型概率计算公式古典概型概率计算公式 多媒体投影多媒体投影 11 情境,让学生最大程度地参与课堂中每个环节。让学生去感受、去体 会知识的形成过程,从而使学生很好地构建知识体系。 教学过程设计以”问题串”的方式呈现为主,教学过程中强调基 于问题解决的设计,在教师的引导下,让学生通过讨论、归纳、探究 等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习 的有效教学模式,较好地拓展师生的活动空间,丰富教学手段,这才 符合新课程改革的理念。 12 20142014 年河南省数学优质课参赛材料年河南省数学优质课参赛材料(1111 号)号) 人教人教 (A A 版版)数学必修三数学必修三 3.23.2 古典概型(第一课时)古典概型(第一课时) 任海港任海港 濮阳市油田第一中学濮阳市油田第一中学