任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt

上传人(卖家):晟晟文业 文档编号:4303348 上传时间:2022-11-27 格式:PPT 页数:51 大小:2.16MB
下载 相关 举报
任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt_第1页
第1页 / 共51页
任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt_第2页
第2页 / 共51页
任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt_第3页
第3页 / 共51页
任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt_第4页
第4页 / 共51页
任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt_第5页
第5页 / 共51页
点击查看更多>>
资源描述

1、 任务二十七任务二十七 单跨超静定梁的内力计算及内力图绘制单跨超静定梁的内力计算及内力图绘制 超静定结构的概念、力法的基本原理、力法的基本方程、超静定超静定结构的概念、力法的基本原理、力法的基本方程、超静定次数的确定与基本结构、力法典型方程、力法的计算步骤次数的确定与基本结构、力法典型方程、力法的计算步骤 力法的基本方程、超静定次数的确定与基本结构、力法典型力法的基本方程、超静定次数的确定与基本结构、力法典型方程、力法的计算方程、力法的计算u教学重点教学重点u教学难点教学难点一、超静定结构的概念一、超静定结构的概念二、力法的基本原理二、力法的基本原理三、力法的基本方程三、力法的基本方程四、超静

2、定次数的确定与基本结构四、超静定次数的确定与基本结构五、五、力法典型方程力法典型方程六、力法的计算步骤和举例六、力法的计算步骤和举例七、对称性的利用七、对称性的利用u教学内容教学内容 任务二十七任务二十七 单跨超静定梁的内力计算及内力图绘制单跨超静定梁的内力计算及内力图绘制一、超静定结构的概念一、超静定结构的概念静定结构静定结构 (statically determinate structurestatically determinate structure)支座反力和各截面的内力都可以用静力平衡条件唯一确定,是没支座反力和各截面的内力都可以用静力平衡条件唯一确定,是没有多余联系的几何不变体系

3、有多余联系的几何不变体系。超静定结构超静定结构 (statically indeterminate structurestatically indeterminate structure)支座反力和各截面的内力不能完全由静力平衡条件唯一确定,是有支座反力和各截面的内力不能完全由静力平衡条件唯一确定,是有多余联系的几何不变体系。多余联系的几何不变体系。静定刚架静定刚架 超静定刚架超静定刚架 有多余联系有多余联系是超静定结构区别于静定结构的基本特性是超静定结构区别于静定结构的基本特性 一、超静定结构的概念一、超静定结构的概念二、力法的基本原理二、力法的基本原理 1.1.力法力法(force met

4、hod)(force method)的基本结构的基本结构 去掉多余联系用多余未知力来代替后得到的静定结构去掉多余联系用多余未知力来代替后得到的静定结构称为按力法计算的基本结构。称为按力法计算的基本结构。现在要设法解出基本结构的多余力现在要设法解出基本结构的多余力X X1 1,一旦求得多余力,一旦求得多余力X X1 1,就可在基本结构上用静力平衡条件求出原结构的所有反,就可在基本结构上用静力平衡条件求出原结构的所有反力和内力。因此多余力是最基本的未知力,又可称为力法力和内力。因此多余力是最基本的未知力,又可称为力法的基本未知量。但是这个基本未知量的基本未知量。但是这个基本未知量X X1 1不能用

5、静力平衡条件不能用静力平衡条件求出,而必须根据基本结构的受力和变形与原结构相同的求出,而必须根据基本结构的受力和变形与原结构相同的原则来确定。原则来确定。二、二、力法的基本原理力法的基本原理 三、三、力法的基本方程力法的基本方程 用来确定用来确定X X1 1的条件是:基本结构在原有荷载和多余力共同的条件是:基本结构在原有荷载和多余力共同作用下,在去掉多余联系处的位移应与原结构中相应的位移相作用下,在去掉多余联系处的位移应与原结构中相应的位移相等。等。为了唯一确定超静定结构的反力和内力,必须同时考虑静为了唯一确定超静定结构的反力和内力,必须同时考虑静力平衡条件和变形协调条件力平衡条件和变形协调条

6、件 01111P若以若以 1111表示表示X1X1为单位力(即为单位力(即 1 1=1=1)时,基本结构在)时,基本结构在X1X1作作用点沿用点沿X1X1方向产生的位移,则有方向产生的位移,则有 11=11=1111X X1 1,于是上式可写于是上式可写成成01111PX1111PX X 式式(a)(a)就是根据原结构的变形条件建立的用以确定就是根据原结构的变形条件建立的用以确定X1X1的变的变形协调方程,即为力法基本方程。形协调方程,即为力法基本方程。三、三、力法的基本方程力法的基本方程 三、三、力法的基本方程力法的基本方程 M 为了具体计算位移为了具体计算位移 1111和和 1p1p,分别

7、绘出基本结构的单,分别绘出基本结构的单位弯矩图位弯矩图M M1 1和荷载弯矩图和荷载弯矩图M Mp p(由荷载(由荷载q q产生),分别如图产生),分别如图 (a)(a)、(b)(b)所示所示 :用图乘法计算这些位移用图乘法计算这些位移 EIlllEIdxEIMM33221321111 EIqllqllEIdxEIMMPP84323114211因此可解出多余力因此可解出多余力X X1 1 8338341111qlEIlEIqlXP三、三、力法的基本方程力法的基本方程 PMXMM11 应用上式绘制弯矩图时,可将应用上式绘制弯矩图时,可将 图的纵标乘图的纵标乘以以 倍,再与倍,再与 图的相应纵标叠

8、加,即可绘出图的相应纵标叠加,即可绘出 图如图图如图 (c)(c)所示。所示。1MPMM1XPM 综上所述可知综上所述可知,力法是以多余力作为基本未知量,取去掉多力法是以多余力作为基本未知量,取去掉多余联系后的静定结构为基本结构,并根据去掉多余联系处的已知余联系后的静定结构为基本结构,并根据去掉多余联系处的已知位移条件建立基本方程,将多余力首先求出,而以后的计算即与位移条件建立基本方程,将多余力首先求出,而以后的计算即与静定结构无异。它可用来分析任何类型的超静定结构。静定结构无异。它可用来分析任何类型的超静定结构。三、三、力法的基本方程力法的基本方程 多余力多余力X X1 1 求出后,其余所有

9、反力和内力都可用静力平衡条件确定。超求出后,其余所有反力和内力都可用静力平衡条件确定。超静定结构的最后弯矩图静定结构的最后弯矩图M M,可利用已经绘出的,可利用已经绘出的 和和 图按叠加原理绘出,即图按叠加原理绘出,即1M四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构 超静定次数超静定次数(degree of static indeterminacy(degree of static indeterminacy):多余联系的多余联系的数目或多余力的数目数目或多余力的数目 确定超静定次数最直接的方法就是在原结构上去掉多余联系,直确定超静定次数最直接的方法就是在原结构上去掉多余联系,

10、直至超静定结构变成静定结构,所去掉的多余联系的数目,就是原结构至超静定结构变成静定结构,所去掉的多余联系的数目,就是原结构的超静定次数。的超静定次数。从超静定结构上去掉多余联系的方式有以下几种:从超静定结构上去掉多余联系的方式有以下几种:1.1.去掉支座处的支杆或切断一根链杆,相当下去掉一个联系,去掉支座处的支杆或切断一根链杆,相当下去掉一个联系,如图如图 (a)(b)(a)(b)所示;所示;四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构2.2.撤去一个铰支座或撤去一个单铰,相当于去掉二个联系,如撤去一个铰支座或撤去一个单铰,相当于去掉二个联系,如图图 (c)(d)(c)(d)所

11、示;所示;四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构3.3.切断一根梁式杆或去掉一个固定支座,相当于去掉切断一根梁式杆或去掉一个固定支座,相当于去掉三个联系,如图三个联系,如图 (e)(e)所示;所示;四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构4.4.将一刚结点改为单铰联结成或将一个固定支座改为固定铰支将一刚结点改为单铰联结成或将一个固定支座改为固定铰支座,相当于去掉一个联系,如图座,相当于去掉一个联系,如图 (f)(f)所示。所示。对于同一个超静定结构,可用各种不同的方式去掉多余联对于同一个超静定结构,可用各种不同的方式去掉多余联系而得到不同的静定结构。因

12、此在力法计算中,同一结构的基系而得到不同的静定结构。因此在力法计算中,同一结构的基本结构可有各种不同的形式。但应注意,去掉多余联系后本结构可有各种不同的形式。但应注意,去掉多余联系后基本基本结构必须是几何不变的结构必须是几何不变的。为了保证基本结构的几何不变性,结。为了保证基本结构的几何不变性,结构中的某些联系是不能去掉的。构中的某些联系是不能去掉的。四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构 如图如图 (a)(a)所示刚架,具有一个多余联系。若将横梁某处改为铰所示刚架,具有一个多余联系。若将横梁某处改为铰接,即相当于去掉一个联系得到图接,即相当于去掉一个联系得到图 (b)(

13、b)所示静定结构;当去掉所示静定结构;当去掉 B B支支座的水平链杆则得到图座的水平链杆则得到图 (c)(c)所示静定结构,它们都可作为基本结构。所示静定结构,它们都可作为基本结构。但是,若去掉但是,若去掉 A A支座的竖向链杆或支座的竖向链杆或 B B支座的竖向链杆,即成瞬变体支座的竖向链杆,即成瞬变体系系 图图 (d)(d)所示,显然是不允许的,当然也就不能作为基本结构。所示,显然是不允许的,当然也就不能作为基本结构。四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构 图图 (a)(a)所示超静定结构属内部超静定结构,因此,只能在结所示超静定结构属内部超静定结构,因此,只能在结构

14、内部去掉多余联系得基本结构,如构内部去掉多余联系得基本结构,如 (b)(b)所示。所示。四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构 对于具有多个框格的结构,按框格的数目来确定超静定的次数对于具有多个框格的结构,按框格的数目来确定超静定的次数是较方便的。一个封闭的无铰框格,其超静定次数等于是较方便的。一个封闭的无铰框格,其超静定次数等于3 3,故当一个,故当一个结构有结构有n n个封闭无铰框格时,其超静定次数等于个封闭无铰框格时,其超静定次数等于3n3n。如图。如图 (a)(a)所示结所示结构的超静定次数等于构的超静定次数等于3x8=243x8=24。当结构的某些结点为铰接时,

15、则一个。当结构的某些结点为铰接时,则一个单铰减少一个超静定次数。图单铰减少一个超静定次数。图 (b)(b)所示结构的超静定次数等于所示结构的超静定次数等于 3x8-5=193x8-5=19。四、四、超静定次数的确定与基本结构超静定次数的确定与基本结构五、五、力法典型方程力法典型方程 用力法计算超静定结构的关键在于根据位移条件建用力法计算超静定结构的关键在于根据位移条件建立力法的基本方程,以求解多余力。对于多次超静定结立力法的基本方程,以求解多余力。对于多次超静定结构,其计算原理与一次超静定结构完全相同。构,其计算原理与一次超静定结构完全相同。图图(a)(a)所示为一个三次超静定结构,在荷载作用

16、下所示为一个三次超静定结构,在荷载作用下结构的变形如图中虚线所示。用力法求解时,去掉支座结构的变形如图中虚线所示。用力法求解时,去掉支座C C的三个多余联系,并以相应的多余力的三个多余联系,并以相应的多余力X X1 1 、X X2 2 和和X X3 3代替所代替所去联系的作用,则得到图去联系的作用,则得到图(b)(b)所示的基本结构上,也必所示的基本结构上,也必须与原结构变形相符,在须与原结构变形相符,在C C点处沿多余力点处沿多余力X X1 1 、X X2 2 和和 X X3 3方向的相应位移方向的相应位移 都应等于零。都应等于零。321和、五、五、力法典型方程力法典型方程根据叠加原理,可将

17、基本结构满足的位移条件表示为:根据叠加原理,可将基本结构满足的位移条件表示为:013132121111PXXX023232221212PXXX033332321313PXXX这就是求解多余力这就是求解多余力X X1 1 、X X2 2和和X X3 3所要建立的力法方程所要建立的力法方程 其物理意义是:在基本结构中,由于全部多余力和已知其物理意义是:在基本结构中,由于全部多余力和已知荷载的共同作用,在去掉多余联系处的位移应与原结构中相荷载的共同作用,在去掉多余联系处的位移应与原结构中相应的位移相等应的位移相等 五、五、力法典型方程力法典型方程用同样的分析方法,我们可以建立力法的一般方程。用同样的

18、分析方法,我们可以建立力法的一般方程。对于对于n n次超静定结构,用力法计算时,可去掉次超静定结构,用力法计算时,可去掉n n个多余联个多余联系得到静定的基本结构,在去掉的系得到静定的基本结构,在去掉的n n个多余联系处代之以个多余联系处代之以n n个个多余未知力。多余未知力。当原结构在去掉多余联系处的位移为零时,当原结构在去掉多余联系处的位移为零时,相应地也就有相应地也就有n n 个已知的位移条件:个已知的位移条件:i i=0(i=1,2,=0(i=1,2,n),n)据此可以建立据此可以建立n n个关于求解多余力的方程个关于求解多余力的方程五、五、力法典型方程力法典型方程3132121111

19、XXX011PnnX3232221212XXX022PnnX332211XXXnnnn0nPnnnX 根据位移互等定理可知副系数根据位移互等定理可知副系数五、五、力法典型方程力法典型方程该方程称为力法的典型方程该方程称为力法的典型方程 按前面求静定结构位移的方法求得典型方程中的系数和自由按前面求静定结构位移的方法求得典型方程中的系数和自由项后,即可解得多余力项后,即可解得多余力XiXi。然后可按照静定结构的分析方法求得原结构的全部反力和内力。然后可按照静定结构的分析方法求得原结构的全部反力和内力。或按下述叠加公式求出弯矩或按下述叠加公式求出弯矩PnnMMXMXMXM2211 再根据平衡条件可求

20、得其剪力和轴力。再根据平衡条件可求得其剪力和轴力。五、五、力法典型方程力法典型方程六、力法的计算步骤和举例六、力法的计算步骤和举例 力法计算超静定结构的步骤力法计算超静定结构的步骤 1.1.去掉原结构的多余联系得到一个静定的基本结构,并以去掉原结构的多余联系得到一个静定的基本结构,并以多余力代替相应多余联系的作用。多余力代替相应多余联系的作用。2.2.建立力法典型方程。根据基本结构在多余力和原荷载建立力法典型方程。根据基本结构在多余力和原荷载的共同作用下,在去掉多余联系处的位移应与原结构中相的共同作用下,在去掉多余联系处的位移应与原结构中相应的位移相同的位移条件,建立力法典型方程应的位移相同的

21、位移条件,建立力法典型方程 3.3.求系数和自由项求系数和自由项 4.4.解典型方程,求出多余未知力。解典型方程,求出多余未知力。5.5.绘出原结构最后内力图。绘出原结构最后内力图。例例1 1:作作图图(a)(a)所示单跨超静定梁的内力图。已知梁的所示单跨超静定梁的内力图。已知梁的EIEI、EAEA均均为常数。为常数。解:解:(1 1)确定超静定次数,选取基本结构)确定超静定次数,选取基本结构三次超静定梁,选取三次超静定梁,选取图图(b)(b)所示的悬臂梁作为基本结构。所示的悬臂梁作为基本结构。六、六、力法的计算步骤和举例力法的计算步骤和举例 (2)(2)建立力法方程建立力法方程根据原结构支座

22、根据原结构支座B B处位移为零的条件,建立如下方程:处位移为零的条件,建立如下方程:11X1+12X2+13X3+1P=0 21X1+22X2+23X3+2P=031X1+32X2+33X3+3P=0 (3)(3)计算系数和自由项计算系数和自由项作荷载弯矩图作荷载弯矩图M MP P图和单位弯矩图图和单位弯矩图M M1 1图、图、M M2 2图、图、M M3 3图,如图,如图图(c)(c)、(d)(d)、(e)(e)、(f)(f)所示。所示。利用图乘法求得力法方程中各系数和自由项分别为利用图乘法求得力法方程中各系数和自由项分别为11=l3/3EI22=l/EI33=l/EA 12=21=-l2/

23、2EI13=31=23=32=0 1P=-ql4/8EI 2P=ql3/6EI3P=0六、力法的计算步骤和举例六、力法的计算步骤和举例 六、六、力法的计算步骤和举例力法的计算步骤和举例 (4)(4)求多余未知力求多余未知力将以上各系数和自由项代入力法方程,得将以上各系数和自由项代入力法方程,得3241223123XX0328X+X026X0llqlEIEIEIllqlEIEIEIlEA212311X,X,X0212qlql解得解得(5)(5)作内力图作内力图 六、力法的计算步骤和举例六、力法的计算步骤和举例 作作M M图:根据叠加公式图:根据叠加公式M=M1X1+M2X2+M3X3+MP计算计

24、算A A、B B两端及跨中弯矩如下两端及跨中弯矩如下MAB=-1/12ql2 (上拉)MBA=-1/12ql2 (上拉)M跨中跨中=1/24ql2 (下拉)作剪力图根据已求出的杆端弯矩和荷载,画作剪力图根据已求出的杆端弯矩和荷载,画ABAB梁的受梁的受 力图力图如图所示如图所示。六、力法的计算步骤和举例六、力法的计算步骤和举例 由由MA=0得得 QBA=-ql/2 所以由所以由Y=0得得 QAB=ql/2因为因为ABAB梁受到均匀分布荷载,剪力图应为斜直线,如梁受到均匀分布荷载,剪力图应为斜直线,如图图(h)(h)所示。所示。七、对称性的利用七、对称性的利用 用力法解算超静定结构时,结构的超静

25、定次数愈高,多余用力法解算超静定结构时,结构的超静定次数愈高,多余未知力就愈多,计算工作量也就愈大。但在实际的建筑结构工未知力就愈多,计算工作量也就愈大。但在实际的建筑结构工程中,很多结构是对称的,我们可利用结构的对称性,适当地程中,很多结构是对称的,我们可利用结构的对称性,适当地选取基本结构,使力法典型方程中尽可能多的副系数等于零,选取基本结构,使力法典型方程中尽可能多的副系数等于零,从而使计算工作得到简化。从而使计算工作得到简化。当结构的几何形状、支座情况、杆件的截面及弹性模量等当结构的几何形状、支座情况、杆件的截面及弹性模量等均对称于某一几何轴线时,则称此结构为对称结构。均对称于某一几何

26、轴线时,则称此结构为对称结构。如图如图a a所示刚架为对称结构,可选取图所示刚架为对称结构,可选取图b b所所示的基本结构,即在对称轴处切开,示的基本结构,即在对称轴处切开,以多余未知力以多余未知力x x1 1,x,x2 2,x,x3 3来代替所去掉的三来代替所去掉的三个多余联系。个多余联系。七、对称性的利用七、对称性的利用相应的单位力弯矩图如图相应的单位力弯矩图如图c,d,ec,d,e所示,所示,七、对称性的利用七、对称性的利用其中其中x x1 1和和x x2 2为对称未知力;为对称未知力;x x3 3为反对称的为反对称的未知力,未知力,显然显然MM1 1,2 2 图是对称图形;图是对称图形

27、;M3 3是反对称图形。是反对称图形。由图形相乘可知:由图形相乘可知:0313113EIdsMM0323223EIdsMM七、对称性的利用七、对称性的利用故力法典型方程简化为故力法典型方程简化为 01212111Pxx02222121Pxx03333Px由此可知,力法典型方程将分成两组:由此可知,力法典型方程将分成两组:一组只包含对称的未知力,即一组只包含对称的未知力,即x x1 1,x,x2 2;另一组只包含反对称的未知力另一组只包含反对称的未知力x x3 3。因此,解方程组的工作得到简化。因此,解方程组的工作得到简化。七、对称性的利用七、对称性的利用非对称的外荷载可分解为对称的和反对称非对

28、称的外荷载可分解为对称的和反对称的两种情况的叠加的两种情况的叠加 (如图(如图 f.a.bf.a.b)七、对称性的利用七、对称性的利用(1 1)外荷载对称时,使基本结构产生的弯)外荷载对称时,使基本结构产生的弯矩图矩图Mp p是对称的,则得是对称的,则得0/33EIdsMMPP从而得从而得x x3 3=0=0。这时只要计算对称多余未知力这时只要计算对称多余未知力x x1 1和和x x2 2。七、对称性的利用七、对称性的利用(2 2)外荷载反对称时,)外荷载反对称时,使基本结构产生的弯矩图使基本结构产生的弯矩图M p p是反对称的是反对称的 ,则得,则得 0/11EIdsMMPP0/22EIds

29、MMPP从而得从而得 X X1 1=X=X2 2=0=0 这时,只要计算反对称的多余未知力这时,只要计算反对称的多余未知力X3.X3.七、对称性的利用七、对称性的利用从上述分析可得到如下结论:从上述分析可得到如下结论:a.a.在计算对称结构时,如果选取的多余在计算对称结构时,如果选取的多余 未知力中一部分是未知力中一部分是对称的,另一部分是反对称的。则力法方程将分为两组:一组对称的,另一部分是反对称的。则力法方程将分为两组:一组只包含对称未知力;另一组只包含反对称未知力。只包含对称未知力;另一组只包含反对称未知力。b.b.结构对称,若外荷载不对称时,可将外荷载分解为对称荷载结构对称,若外荷载不

30、对称时,可将外荷载分解为对称荷载和反对称荷载,而分别计算然后叠加。这时,在对称荷载作用和反对称荷载,而分别计算然后叠加。这时,在对称荷载作用下,反对称未知力为零,即只产生对称内力及变形;在反对称下,反对称未知力为零,即只产生对称内力及变形;在反对称荷载作用下,对称未知力为零,即只产生反对称内力及变形。荷载作用下,对称未知力为零,即只产生反对称内力及变形。七、对称性的利用七、对称性的利用例例2:2:利用对称性,计算利用对称性,计算图图(a)(a)所示单跨超静定梁,并绘最后弯矩图。所示单跨超静定梁,并绘最后弯矩图。解:解:(1 1)此结构为三次超静定梁,且结构及荷载均为对称,因此可)此结构为三次超

31、静定梁,且结构及荷载均为对称,因此可以利用对称性进行计算。以利用对称性进行计算。图图(b)(b)所示为半结构。所示为半结构。(2 2)选取选取图图(c c)所示的悬臂梁作为基本结构。由于半结构的所示的悬臂梁作为基本结构。由于半结构的C C支支座是定向支座,梁座是定向支座,梁C C点的水平位移为零,点的水平位移为零,根据对称性的结论可知根据对称性的结论可知水平未知力水平未知力X X2 2=0=0,只须考虑未知力,只须考虑未知力X X1 1的作用。的作用。七、对称性的利用七、对称性的利用(3 3)建立力法方程:建立力法方程:11X1+1P=0七、对称性的利用七、对称性的利用(4 4)计算系数和自由

32、项计算系数和自由项 作荷载弯矩图作荷载弯矩图MP图和单位弯矩图图和单位弯矩图M1图,图,如如图图(d)(d)、(e)(e)所示。所示。利用图乘法求得力法方程中系数和自由项分别为:利用图乘法求得力法方程中系数和自由项分别为:EILLEI2121111)(EIqLLqLEIP48-1281311-321)(5 5)求多余未知力)求多余未知力将以上各系数和自由项代入力法方程,得将以上各系数和自由项代入力法方程,得 七、对称性的利用七、对称性的利用048qL-231EIXEIL2421qLX (6 6)作内力图作内力图作作M图:根据叠加公式图:根据叠加公式 M=M1 1X X1 1+MP P先画出半结

33、构的先画出半结构的M M图,在用对称性绘制出图,在用对称性绘制出原结构最后原结构最后M M图,图,图图(f)(f)所示。所示。绘出原结构最后的剪力图,绘出原结构最后的剪力图,图图(g g)所示。所示。七、对称性的利用七、对称性的利用小小 结结 1.1.力法的基本原理力法的基本原理 力法是计算超静定结构的基本方法之一。超静定结构的主要特点力法是计算超静定结构的基本方法之一。超静定结构的主要特点是有多余联系,力法解题的基本原理是:首先将超静定结构中的多余是有多余联系,力法解题的基本原理是:首先将超静定结构中的多余联系去掉,代之以多余未知力。以去掉多余联系后得到的静定结构作联系去掉,代之以多余未知力

34、。以去掉多余联系后得到的静定结构作为基本结构,以多余未知力作为力法的基本未知量,利用基本结构在为基本结构,以多余未知力作为力法的基本未知量,利用基本结构在荷载和多余未知力共同作用下的变形条件建立力法方程(称为力法的荷载和多余未知力共同作用下的变形条件建立力法方程(称为力法的基本方程),从而求解多余未知力。求得多余未知力后,超静定问题基本方程),从而求解多余未知力。求得多余未知力后,超静定问题就转化为静定问题,可用平衡条件求解所有未知力。就转化为静定问题,可用平衡条件求解所有未知力。七、对称性的利用七、对称性的利用2.2.确定基本未知量和选择基本结构确定基本未知量和选择基本结构 一般用去掉多余联

35、系使原超静定结构变为静定结构的方法。去一般用去掉多余联系使原超静定结构变为静定结构的方法。去掉的多余联系处的多余未知力即为基本未知量。去掉多余联系后的掉的多余联系处的多余未知力即为基本未知量。去掉多余联系后的静定结构即为基本结静定结构即为基本结 构。所以基本未知量和基本结构是同时选定的。构。所以基本未知量和基本结构是同时选定的。同一超静定结构可以选择多种基本结构,应尽量选择计算简单的基同一超静定结构可以选择多种基本结构,应尽量选择计算简单的基本结构,但必须保证基本结构是几何不变且无多余联系的静定结构。本结构,但必须保证基本结构是几何不变且无多余联系的静定结构。七、对称性的利用七、对称性的利用3

36、.3.建立力法方程建立力法方程 基本结构在荷载(或温度变化、支座移动等)及多余未知力作基本结构在荷载(或温度变化、支座移动等)及多余未知力作用下,沿多余未知力方向的位移应与原结构在相应处的位移相等,用下,沿多余未知力方向的位移应与原结构在相应处的位移相等,据此列出力法方程。要充分理解力法方程所代表的变形条件的意义,据此列出力法方程。要充分理解力法方程所代表的变形条件的意义,以及方程中各项系数和自由项的含义。以及方程中各项系数和自由项的含义。因此,力法计算的关键是:确定基本未知量;选择基本结构;因此,力法计算的关键是:确定基本未知量;选择基本结构;建立基本方程。建立基本方程。七、对称性的利用七、

37、对称性的利用4.4.力法方程的系数和自由项的计算力法方程的系数和自由项的计算 系数和自由项的计算就是求静定结构的位移。因此,要使系数、自系数和自由项的计算就是求静定结构的位移。因此,要使系数、自由项的计算准确,必须保证静定结构的内力(或内力图)的正确和位移由项的计算准确,必须保证静定结构的内力(或内力图)的正确和位移计算的准确。力法方程中的主系数计算的准确。力法方程中的主系数 (ii)ii)恒大于零;副系数和自由项。恒大于零;副系数和自由项。可能小于零、等于零,也可能大于零,且副系数可能小于零、等于零,也可能大于零,且副系数 七、对称性的利用七、对称性的利用 ij=jiji,注意这一特点。,注

38、意这一特点。5.5.超静定结构的内力计算与内力图的绘制超静定结构的内力计算与内力图的绘制 通过解力法方程求得多余未知力后,可用静力平衡方程通过解力法方程求得多余未知力后,可用静力平衡方程或内力叠加公式计算超静定结构的内力和绘制内力图。对梁或内力叠加公式计算超静定结构的内力和绘制内力图。对梁和刚架来说,一般先计算杆端弯矩、绘制弯矩图,然后计算和刚架来说,一般先计算杆端弯矩、绘制弯矩图,然后计算杆端剪力、绘制剪力图,最后计算杆端轴力、绘制轴力图。杆端剪力、绘制剪力图,最后计算杆端轴力、绘制轴力图。6.6.对称性的利用对称性的利用 如果结构对称,可选择对称的基本结构,利用荷载对称或反如果结构对称,可选择对称的基本结构,利用荷载对称或反对称作用时的内力和变形特性,可使计算得以简化。对称作用时的内力和变形特性,可使计算得以简化。七、对称性的利用七、对称性的利用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(任务二十七单跨超静定梁的内力计算及内力图绘制课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|