1、 八年级下学期期末数学试题八年级下学期期末数学试题一、单选题一、单选题1下列四幅作品分别代表“清明”、“谷雨”、“白露”、“大雪”,其中是中心对称图形的是()ABCD2用反证法证明命题“在中,若,则”时,首先应假设()ABCD3如图,将正五边形 ABCDE 的点 C 固定,按顺时针方向旋转一定角度,使新五边形的顶点落在直线 BC 上,则旋转的最小角度是()A108B72C54D364将分式中的 x,y 同时扩大 4 倍,则分式的值()A扩大 4 倍B扩大 2 倍C缩小到原来的一半D保持不变5若,且,则 a 的取值范围是()ABCD6以图(1)(以 O 为圆心,半径为 1 的半圆)作为“基本图形
2、”,分别经历如下变换,不能得到图(2)的是()A绕着 OB 的中点旋转 180即可B先绕着点 O 旋转 180,再向右平移 1 个单位C先以直线 AB 为对称轴进行翻折,再向右平移 1 个单位D只要向右平移 1 个单位7如图,添加一个条件_,即可证明下列添加的条件错误的是()ABCD8证明:平行四边形对角线互相平分 已知:四边形 ABCD 是平行四边形,如图所示求证:,以下是排乱的证明过程,正确的顺序应是,四边形 ABCD 是平行四边形,()ABCD9若关于 x 的分式方程有增根,则 m 的值为()A5B4C3D210如图,的面积为 3,则四边形 ABCD 的面积为()A10B12C15D20
3、11数学课上,老师让计算佳佳的解答如下:解:原式3对佳佳的每一步运算,依据错误的是()A:同分母分式的加减法法则B:合并同类项法则C:逆用乘法分配律D:等式的基本性质12如图,在中,AD 平分,且,点 E 是 AB 上一动点,则 D,E 之间的最小距离为()A8B4C2D113如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角 ,尺规作图及步骤如下:步骤一:以点 为圆心,为半径画弧;步骤二:以点 为圆心,为半径画弧,两弧交于点 ;步骤三:连接 ,交 延长线于点 下面是四位同学对其做出的判断:小明说:;小华说:;小强说:;小方说:则下列说法正确的是()A只有小明说得对B小华和小强说的都对C小强
4、和小方说的都不对D小明和小方说的都对14若不等式组无解,则 m 的值可能()A7B6C3D515如图,点 E、F 分别是ABCD 边 AD、BC 的中点,G、H 是对角线 BD 上的两点,且BG=DH则下列结论中错误的是()AB四边形 EGFH 是平行四边形CD16某飞行器在相距为 m 的甲、乙两站间往返飞行在没有风时,飞行器的速度为 v,往返所需时间为;如果风速度为,则飞行器顺风飞行速度为,逆风飞行速度为,往返所需时间为则、的大小关系为()ABCD无法确定二、填空题二、填空题17因式分解:18如图,在中,将沿 BC 所在直线向右平移得到,连接,若,则线段的长为 19对于平面直角坐标系 xOy
5、 中第一象限内的点和图形 W,给出如下定义:过点 P 作 x 轴和 y 轴的垂线,垂足分别为 M,N,若图形 W 中的任意一点满足且,则称四边形 PMON 是图形 W 的一个覆盖,点 P 为这个覆盖的一个特征点例:若,则点为线段 MN 的一个覆盖的特征点已知,请回答下列问题:(1)在,中,是的覆盖特征点的是 ;(2)若在一次函数的图象上存在的覆盖的特征点,则 m 的取值范围是 三、解答题三、解答题20已知(1)用含 x 的代数式表示 y 为 ;(2)若 y 的取值范围如图所示,求 x 的正整数值21先化简,然后再从,2,3 中选一个合适的数作为 x 的值代入求值22如图,正方形网格中,每个小正
6、方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点,均在格点上(1)画出将向左平移 8 个单位长度得到的;(2)绕点顺时针旋转 90后得到,请在图中标出点,写出点的坐标为 ;(3)过点的直线 l 将四边形分成面积相等的两部分,请在图中画出直线 l23如图,在中,D、E 分别为 AB、AC 的中点,过点 C 作交 DE 的延长线于点 F(1)求证:四边形 BCFD 为平行四边形;(2)若,求 EF 的长24教材中写道:“形如的式子称为完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法
7、配方法是一种重要的解决数学问题的方法,不仅可以将有些看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题及求代数式最大、最小值等问题,例如:分解因式原式;例如:求代数式的最小值原式,当时,有最小值是 2解决下列问题:(1)若多项式是一个完全平方式,那么常数 m 的值为 ;(2)分解因式:;(3)若,比较:()0(填“,或”),并说明理由;(4)求代数式的最大或最小值25某新能源汽车经销商分别花费 60 万元,32 万元购进 A,B 两种型号的新能源汽车若干辆已知A 型汽车的进货单价比 B 型汽车的进货单价高 4 万元,且购进 A 型汽车的数量是 B 型汽车的数量的1.5 倍(1)求 A
8、,B 两种型号汽车的进货单价;(2)由于新能源汽车需求不断增加,该店准备再次购进 A,B 两种型号的新能源汽车 60 辆,已知 A 型车的售价为 25 万元/辆,B 型车的售价为 20 万元/辆根据销售经验,购进 B 型车的数量不少于 A 型车的 2 倍如果设将这 60 辆汽车全部售完会获利 w 万元,那么该经销商应购进 A 型车多少辆,才能使 w 最大?w 最大为多少万元?26如图 1,MN 是过点 A 的直线,过点 D 作于点 B,连接CB;过点 C 作,与 MN 交于点 E(1)连接 AD,AD 是 AC 的 倍;(2)直线 MN 在图 1 所示位置时,可以得到线段 BD 和 AE 的数
9、量关系是 ,与BC 之间的数量关系是 ,请证明你的结论;(3)直线 MN 绕点 A 旋转到图 2 的位置,若,则 AB 的长为 (直接写结果);(4)直线 MN 绕点 A 旋转到图 3 的位置时,直接写出线段 BA,BC,BD 之间的数量关系 答案解析部分答案解析部分1【答案】D2【答案】D3【答案】B4【答案】A5【答案】A6【答案】D7【答案】B8【答案】C9【答案】A10【答案】B11【答案】D12【答案】C13【答案】D14【答案】C15【答案】D16【答案】A17【答案】18【答案】419【答案】(1)P1(2)m-且 m020【答案】(1)(2)解:由图可得,解得,x 的正整数值为
10、:1,221【答案】解:分式的分母不等于零,当时,把代入原式22【答案】(1)解:如图,A1B1C1即为所求(2)(2,2)(3)解:如图,直线 l 即为所求23【答案】(1)证明:D、E 分别为 AB、AC 的中点,DE 为的中位线,DEBC,即DFBC,又CFBD,四边形 BCFD 为平行四边形(2)解:DE 为的中位线,DE=BC=3,四边形 BCFD 为平行四边形,DF=BC=6,EF=DF-DE=6-3=324【答案】(1)9(2)(3),理由如下:,即;故答案为:(4)解:,当时,有最大值 425【答案】(1)解:设 B 型汽车的进货单价价为 x 万元,则 A 型汽车进货单价为(x
11、+4)万元,由题意可得:,解得:,经检验,是所列方程的根,且符合题意,x+4=20,答:A,B 两型号汽车的进货单价分别为 20 万元和 16 万元;(2)解:设 A 型汽车 a 辆,则 B 型汽车(60-a)辆,由题意可得:,解得:,由题意:,w 随 a 的增大而增大,当,时,w 取最大值,此时,答:当购进 A 型汽车 20 辆时,w 取得最大值,w 的最大值为 260 万元26【答案】(1)(2)如图 1,设 AC 与 BD 交于 O,由题可知,BCE90ACD,ACEBCD,BDMN,ABD90ACD,AOBDOC,BACCDB,ACDC,ACEDCB(ASA),CEBC,AEBD,BCE90,ECB 为等腰直角三角形,BEBC,BEAEABBDAB,BDABBC;故答案为:AEBD;BDABBC;(3)4(4)BA+BDBC