正交检验的极差分析和方差分析课堂课件.ppt

上传人(卖家):晟晟文业 文档编号:4412336 上传时间:2022-12-07 格式:PPT 页数:77 大小:1.67MB
下载 相关 举报
正交检验的极差分析和方差分析课堂课件.ppt_第1页
第1页 / 共77页
正交检验的极差分析和方差分析课堂课件.ppt_第2页
第2页 / 共77页
正交检验的极差分析和方差分析课堂课件.ppt_第3页
第3页 / 共77页
正交检验的极差分析和方差分析课堂课件.ppt_第4页
第4页 / 共77页
正交检验的极差分析和方差分析课堂课件.ppt_第5页
第5页 / 共77页
点击查看更多>>
资源描述

1、第四章方差分析1?方差分析解决的主要问题是什么??单因素方差分析与双因素方差分析原理的相同点与不同点??正交实验设计的基本原理是什么?第四章第四章方差分析方差分析2 例题某公司计划引进一条生产线.为了选择一条质量优良的生产线以减少日后的维修问题,他们对6种型号的生产线作了初步调查,每种型号调查4条,结果列于表8-1。这些结果表示每个型号的生产线上个月维修的小时数。试问由此结果能否判定由于生产线型号不同而造成它们在维修时间方面有显著差异?4.1 方差分析的基本概念和原理第四章第四章方差分析方差分析3表 41 对6种型号生产线维修时数的调查结果序号型号1234A型9.58.811.47.8B型4.

2、37.83.26.5C型6.58.38.68.2D型6.17.34.24.1E型10.04.85.49.6F型9.38.77.210.14.1 方差分析的基本概念和原理第四章第四章方差分析方差分析4研究的指标:维修时间记作Y,控制因素是生产线的型号,分为6个水平即A,B,C,D,E,F,每个水平对应一个总体Yi(i=1,2,6)。),(2?NY4.1 方差分析的基本概念和原理第四章第四章方差分析方差分析5现在的试验就是进行调查,每种型号调查4台,相当于每个总体中抽取一个容量为 4的样本,得到的数据记作yij(i=1,2,6;j=1,2,3,4),即为下表数据。计算各样本平均数如下:iy型号AB

3、CDEF9.45.57.95.47.58.8iy表 824.1 方差分析的基本概念和原理第四章第四章方差分析方差分析6两个总体平均值比较的检验法把样本平均数两两组成对:与,与,与,与,与,共有(15)对。1?y2?y1?y3?y1?y6?y2?y3?y5?y6?y?26C4.1 方差分析的基本概念和原理第四章方差分析7即使每对都进行了比较,并且都以0.95的置信度得出每对均值都相等的结论,但是由此要得出这6个型号的维修时间的均值都相等。这一结论的置信度仅是上述方法存在的问题工作量大置信度低将这15对平均数一一进行比较检验4632.0)95.0(15?4.1 方差分析的基本概念和原理第四章方差分

4、析8方差分析的基本原理:(1)将数据总的偏差平方和按照产生的原因分解成:(总的偏差平方和)=(由因素水平引起的偏差平方和)+(试验误差平方和)(2)上式右边两个平方和的相对大小可以说明因素的不同水平是否使得各型号的平均维修时间产生显著性差异,为此需要进行适当的统计假设检验.4.1 方差分析的基本概念和原理第四章方差分析9?数学模型和数据结构?参数点估计?分解定理 自由度?显著性检验?多重分布与区间估计4.2 单因素试验的方差分析第四章方差分析10在单因素试验中,为了考察因素A的k个水平A1,A2,Ak对Y的影响(如k种型号对维修时间的影响),设想在固定的条件Ai下作试验.所有可能的试验结果组成

5、一个总体Yi,它是一个随机变量.可以把它分解为两部分(4-1)iiiY?4.2.1 数学模型和数据结构第四章方差分析11其中:纯属Ai作用的结果,称为在Ai条件下Yi的真值(也称为在Ai条件下Yi的理论平均).是实验误差(也称为随机误差)。(4-2)其中,和 都是未知参数(i=1,2,k).i?i?),0(2?Ni),(2?iiNYi?2?4.2.1 数学模型和数据结构第四章方差分析12假定在水平Ai下重复做m次试验,得到观测值imiiYYY,.,2112jM合计平均A1Y11Y12Y1jY1mT1A2Y21Y22Y2jY2mT2AiYi1Yi2YijYimTiAkYk1Yk2YkjYkmTk

6、1Y2YiYkY表 434.2.1 数学模型和数据结构第四章方差分析13表中:(i=1,2,k)(4-3)Yij表示在Ai条件下第j次试验的结果,用式子表示就是(i=1,2,k j=1,2,m)(4-4)注意:每次试验结果只能得到Yij,而(4-4)式中的和都不能直接观测到。?mjijiYmY11ijiijY?i?ij?4.2.1 数学模型和数据结构第四章方差分析14为了便于比较和分析因素A的水平Ai对指标影响的大小,通常把再分解为(i=1,2,k)(4-5)其中,称为一般平均(Grand Mean),它是比较作用大小的一个基点;i?ii?kiik11?8.2.1 数学模型和数据结构第四章第四

7、章方差分析方差分析15并且称为第i个水平Ai的效应.它表示水平的真值比一般水平差多少。满足约束条件(4-6)可得?ii021?k?;ijiijY?0?i?i=1,2,k;j=1,2,m4.2.1 数学模型和数据结构第四章方差分析16要解决的问题找出参数和 的估计量分析观测值的偏差k?,.,212?检验各水平效应有无显著差异k?,.,214.2.1 数学模型和数据结构第四章方差分析17用最小二乘法求参数的估计量,然后寻求的无偏估计量.须使参数的估计值能使在水平Ai下求得的观测值Yij与真值 之间的偏差尽可能小。为满足此要求,一般考虑用最小偏差平方和原则,也就是使观测值与真值的偏差平方和达到最小.

8、k?,.,212?k?,.,21i?4.2.2 参数点估计第四章方差分析18由(4-4)可知,上述偏差平方和令下列各偏导数为零22112)()(iijiijkimjijYYS?,0?S0?iS?(i=1,2,k)4.2.2 参数点估计第四章方差分析19由解得(4-7)由解得(4-8)?0)(2?ii jYS?YYkmij?1?0)(21?imjijiYS?YYYmimjiji?11?4.2.2 参数点估计第四章方差分析20并由此得 的估计量至此,求得参数的估计量(4-9)iiiY?i?ii?,?Y?,?YYii?iiY?4.2.2 参数点估计第四章方差分析21按照上述原则求参数估计量的方法称为

9、最小二乘法,称为最小二乘估计量.我们还可以证明分别是参数的无偏估计量。将 和 分别用它们的估计量代替,可以得到试验误差 的估计量,(4-10)ii?,?ii?,?ii?,?i?ij?ijeiijijYYe?4.2.2 参数点估计第四章第四章方差分析方差分析22为了由观测值的偏差中分析出各水平的效应,我们研究三种偏差:,和.根据前面参数估计的讨论,它们分别表示,定理(4-11)YYij?YYi?iijYY?ijYi?ij?21121211)()()(?kimjiijkiikimjijYYYYmYY的估计.和4.2.3 分解定理 自由度第四章第四章方差分析方差分析23)()(ii jii jYYY

10、YYY?222)()(2)()(iijiijiiijYYYYYYYYYY?21112)()(YYmYYkiikimji?证明:0)(1?imjijYY4.2.3 分解定理 自由度第四章第四章方差分析方差分析24令则分解定理(8-11)可写成(4-12)2)(YYSijT?2)(YYmSiA?2()iEijSYY?EATSSS?4.2.3 分解定理 自由度第四章方差分析25上式中,称为总偏差平方和.称为误差平方和(或组内平方和);称为因素A的效应平方和(或组间平方和),ST的自由度fT=km-1SA的自由度fA=k-1SE的自由度fE=k(m-1)容易看出,自由度之间也有类似于分解定理的关系(4

11、-13)TSESASEATfff?4.2.3 分解定理 自由度第四章方差分析26参数假设检验的假设条件观测值(i=1,2,k;j=1,2,m)相互独立在水平Ai条件下,Yij(j=1,2,m)服从正态分布N),(2?i4.2.4 显著性检验第四章方差分析27要判断在因素A 的k个水平条件下真值之间是否有显著性差异,即检验假设H0:,H1:不全相等相当于检验假设H0:(i=1,2,k),H1:i不全为零k?210?i?4.2.4 显著性检验第四章方差分析28可以证明当H0为真时,(4-16)并且与相互独立.得(4-17)其中和称为均方(Mean Square).)1(22?kmST?),1(22

12、?kSA?)1(22?mkSE?2?AS2?ES)1(,1()1(/)1/()1(/)1/(22?mkkFmkSkSmkSkSFEAEAA?)1/(?kSA)1(/?mkSE4.2.4 显著性检验第四章方差分析29利用(8-17)式来检验原假设H0是否成立.对于给定的显著水平,可以从F分布表查出临界值再根据样本观测值算出FA的值.当时,拒绝H0,当时,接受H0。?),1(,1(?mkkF?)1(,1(?mkkFFA?)1(,1(?mkkFFA?4.2.4 显著性检验第四章方差分析30方差来源平方和自由度均方F比组间(因素A)SAK-1SA/(k-1)组内(实验误差)SEK(m-1)SEk(m-

13、1)总和ST=SA+SEKm-1-)1(/1/?mkSkSFEAA表 44 方差分析表4.2.4 显著性检验第四章方差分析31下面继续讨论前面6种型号的生产线的例子。根据调查结果,在=0.05的显著水平时,检验这6种型号的生产线在平均维修时间方面有无显著差异?根据实践经验,认为各种型号生产线的维修时间是近似服从正态分布的。作统计假设:6种型号的生产线平均维修时数无显著差异,即H0:i=0(i=1,2,6),H1:i不全为零?4.2.4 显著性检验第四章方差分析32计算SA及SEkmTmTYYmSikiiA2221)(?mTYYYSiijiijE?222)(?mjijiYT1?ijjYTT4.2

14、.4 显著性检验第四章方差分析33表 45 计算列表台号型号1234TiTi2A型9.58.811.47.837.51406.25358.49B型4.37.83.26.521.8475.24131.82C型6.58.38.68.231.6998.56252.34D型6.17.34.24.121.7470.89124.95E型10.04.85.49.629.8888.04244.36F型9.38.77.210.135.31246.09316.03?mjijY127.177?iT07.54852?iT99.14272?ijY4.2.4 显著性检验第四章方差分析34再将计算结果分别代入SA与SE两式

15、中,得到第一自由度第二自由度55.55467.177407.5485222?kmTmTSiA72.56407.548599.142722?mTYSiijE5161?kfA1836)1(?mkfE4.2.4 显著性检验第四章方差分析35查F分布表得由于,故拒绝H0。该结论说明,至少有一种生产线型号的效应不为零,这等价于至少有两种型号的生产线的平均维修时数是有显著差异的。77.2)18,5(05.0?F77.253.3?AF方差来源平方和自由度均方F比组间SA55.55511.11组内SE56.72183.15总和ST112.2723-53.315.311.11?AF表 46 方差分析表4.2.4

16、 显著性检验第四章第四章方差分析方差分析36q 检验法:计算任意两水平的差值,当时,判断 与 差异显著;当时,判断 与 差异显著。查多重比较的q表得(8-18)siYY?)(si?),(Efkq?mfSfkqDEE/),(?siYY?D?iYsYsiYY?D?iYsY4.2.5 多重分布与区间估计第四章方差分析37区间估计在置信度为的情况下,的置信区间为(8-19)?1si?DYYDYYsisisi?)()(?4.2.5 多重分布与区间估计第四章方差分析38?双因素方差分析的类型?数据结构?离差平方和的分解?应用实例4.3 双因素方差分析第四章第四章方差分析方差分析39在实际问题的研究中,有时

17、需要考虑两个因素对实验结果的影响。例如饮料销售,除了关心饮料颜色之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因。采用不同的销售策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位;在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解、接受该生产线。4.3.1 双因素方差分析的类型第四章第四章方差分析方差分析40若把饮料的颜色看作影响销售量的因素 A,饮料的销售地区则是影响因素B。对因素A和因素B同时进行分析,就属于双因素方差分析。双因素方差分析的内容,是对影响因素进行检验,究竟是一个因素在起作用,还是两个因素都起作用,或是两个因

18、素的影响都不显著。4.3.1 双因素方差分析的类型第四章方差分析41双因素方差分析的类型无交互作用的双因素方差分析有交互作用的双因素方差分析假定因素A和因素B的效应之间是相互独立的,不存在相互关系假定因素A和因素B的结合会产生出一种新的效应4.3.1 双因素方差分析的类型第四章第四章方差分析方差分析42例如,若假定不同地区的消费者对某种颜色有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。有交互作用的双因素方差分析已超出本书的范围,这里介绍无交互作用的双因素方差分析。4.3.1 双因素方差分析的类型第四章第四章方差分析方差分析

19、43双因素方差分析的数据结构如表所示:双因素方差分析数据结构因素AA1A2Ar因素BB1X11X12X1rB2X21X22X2rBkXk1Xk2XkriX1x2xkxjX1x2xrxx表 874.3.2 数据结构第四章方差分析44表中,因素A位于列的位置,共有r个水平,代表第j种水平的样本平均数;因素B位于行的位置,共有k个水平,代表第i种水平的样本平均数。为样本总平均数,样本容量n=rk。每一个观察值Xij看作由A因素的r个水平和B因素的k个水平所组合成的rk个总体中抽取样本容量为1的独立随机样本。这rk个总体的每一个总体均服从正态分布,且有相同的方差。这是进行双因素方差分析的假定条件。jx

20、ixx4.3.2 数据结构第四章第四章方差分析方差分析452222()()()()()ijjjiiSSTxxSSAxxk xxSSBxxr xxSSE SST SSASSB?4.3.3 离差平方和的分解第四章方差分析46各离差平方和对应的自由度:总离差平方和SST的自由度为rk-1=n-1;因素A的离差平方和SSA的自由度为r-1;因素B的离差平方和的自由度为 k-1;随机误差SSE的自由度为(r-1)(k-1)4.3.3 离差平方和的分解第四章第四章方差分析方差分析47由离差平方和与自由度可以计算均方差:对因素A而言:对因素B而言:对随机变量而言:1?rSSAMSA1?kSSBMSB)1)(

21、1(?krSSEMSE4.3.3 离差平方和的分解第四章方差分析48表 48 双因素方差分析表误差来源离差平方和自由度均方差F值A因素SSAr-1MSA=SSA/(r-1)FA=MSA/MSE因素SSBk-1MSB=SSB/(k-1)FB=MSB/MSE误差SSE(r-1)(k-1)MSE=SSE/(r-1)(k-1)-合计SSTn-1-4.3.3 离差平方和的分解第四章方差分析49某商品有五种不同的包装方式(因素 A),在五个不同地区销售(因素B),现从每个地区随机抽取一个规模相同的超级市场,得到该商品不同包装的销售资料如下表.表 49现欲检验包装方式和销售地区对该商品销售是否有显著性影响。

22、(=0.05)包装方式(A)A1A2A3A4A5销售地区(B)B12012201014B2221020126B32414181810B41648618B526221620104.3.4 应用实例第四章方差分析50解:若五种包装方式的销售的均值相等,则表明不同的包装方式在销售上没有差别。建立假设对因素A:H0:,包装方式之间无差别H1:不全相等,包装方式之间有差别对因素B:H0:地区之间无差别H1:不全相等 地区之间有差别54321?54321,?54321?54321,?4.3.4 应用实例第四章方差分析51 计算F值 因素A的列均值分别为:因素B的行均值分别为:总均值=15.04故:SST=

23、(20-15.04)2+(10-15.04)2=880.96SSA=5(21.6-15.04)2+5(11.6-15.04)2=335.36SSB=5(15.2-15.04)2+5(18.8-15.04)2=199.36SSE=880.96-335.36-199.36=346.246.11,2.13,4.16,4.12,6.2154321?xxxxx8.18,4.10,8.16,14,2.1554321?xxxxx4.3.4 应用实例第四章方差分析52接下来:因此64.21)15)(15(24.34684.491536.19984.831536.335?MSEMSBMSA30.264.2184

24、.4987.364.2184.83?MSEMSBFMSEMSAFBA4.3.4 应用实例第四章方差分析53 统计决策对于因素A,因为FA=3.87Fcrit=3.01故拒绝H0,接受H1,说明不同的包装方式对该商品的销售产生影响。对于因素B,因为FB=2.30F0.05,FAF0.01,故A因子非常显著;?F0.10FBF0.05,故B因子比较显著;?F0.10FCF0.05,故C因子也比较显著,但比A、B二因子的影响作用差。4.4.3 方差分析法第四章第四章方差分析方差分析77本例方差分析的结论与直观分析法的结论是一致的即:反应温度对产率影响最大,搅拌速度影响最小;好的生产工艺条件仍然是A2B2C1。4.4.3 方差分析法

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(正交检验的极差分析和方差分析课堂课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|