1、 指派问题n指派问题是一种特殊的整数规划问题一、问题的提出一、问题的提出 设有m个工人,能做n件事,但效率不同,并规定每个工人做且只能做一件事,每件事有且只能有一个工人做,问应该如何安排他们的工作,使花费的总时间(成本)最少或效率最高?二、指派问题的数学模型n设第i个工人做第j件事的时间是 ,决策变量是n则数学模型如下件事个工人不做第第,件事个工人做第第jijixij0,1ijcnjmixnjxmixxczijmiijnjijnjmiijij,2,1;,2,1;1,0,2,1,1,2,1,1min1111举例说明1)表上作业法2)匈牙利法n例 有四个工人和四台不同的机床,每位工人在不同的机床上
2、完成给定的任务的工时如表5.12所示,问安排哪位工人操作哪一台机床可使总工时最少?任务1任务2任务3任务4工人1工人2工人3工人4215134104147314161378119获得初始解:圈零/划零操作n将时间矩阵C的每一行都减去相应行的最小元素和每一列都减去相应列的最小元素,使每一行和每一列都含有零;n从最少零数的行或列开始,将“零”圈起来,并划去它所在行和所在列的其它零;n反复做2),直到所有零被圈起或被划掉为止。得到初始解。n判断是否为最优解:圈起的零的个数是否等于n。确定调整行和列n在没有圈起的零所在行上打“”;n在打“”行中所有零所在的列打“”;n在打“”列中含有圈起零的行上打“”
3、,n反复执行2)和3)两步,直到不能打“”为止;n用直线划去打用直线划去打“”的列和不打的列和不打“”的行的行,没有划去的行构成调整的行,划去的列构成调整列。调整可行解的方法n在调整行中寻找最小的元素,将它作为调整量;n将调整行各元素减去调整量,对调整列中各元素加上调整量。n再次执行“圈零”和“划零”的操作,并循环以上的步骤,直到圈起的零数等于n为止。匈牙利法解例3.3n时间矩阵n各行各列减去最小元素后得91374111614138144157310258300432490115080圈零划零58300432490115080得最优解n将圈起的零改为1,其它元素改为0,即得最优解如下n最小总时
4、间为22。0001100000100100)ijx(再看一例n请求解如下矩阵表达的指派问题 9107104106614159141217766698979712减去最小元素563601000892751000003220205圈零划零563601000892751000003220205打勾划线确定调整行和列563601000892751000003220205调整可行解341401000811053800003420207再圈零划零341401000811053800003420207得最优解0000101000100000010000010)(ijx另一最优解n最小时间(成本)min z=
5、32 0000100100100000100000010)(ijx匈牙利算法示例 (二)、解题步骤:(二)、解题步骤:指派问题是指派问题是0-1 规划的特例,也是运输问题的特例,规划的特例,也是运输问题的特例,当然可用整数规划,当然可用整数规划,0-1 规划或运输问题的解法去求规划或运输问题的解法去求解,这就如同用单纯型法求解运输问题一样是不合算解,这就如同用单纯型法求解运输问题一样是不合算的。利用指派问题的特点可有更简便的解法,这就是的。利用指派问题的特点可有更简便的解法,这就是匈牙利法,即匈牙利法,即系数矩阵中独立系数矩阵中独立 0 0 元素的最多个数等于元素的最多个数等于能覆盖所有能覆盖
6、所有 0 0 元素的最少直线数。元素的最少直线数。第一步:变换指派问题的系数矩阵(第一步:变换指派问题的系数矩阵(cij)为)为(bij),使,使在在(bij)的各行各列中都出现的各行各列中都出现0元素,即元素,即 (1)从(从(cij)的每行元素都减去该行的最小元素;)的每行元素都减去该行的最小元素;(2)再从所得新系数矩阵的每列元素中减去该列的最再从所得新系数矩阵的每列元素中减去该列的最小元素。小元素。第二步:进行试指派,以寻求最优解。第二步:进行试指派,以寻求最优解。在在(bij)中找尽可能多的独立中找尽可能多的独立0元素,若能找出元素,若能找出n个独个独立立0元素,就以这元素,就以这n
7、个独立个独立0元素对应解矩阵元素对应解矩阵(xij)中的元中的元素为素为1,其余为,其余为0,这就得到最优解。找独立,这就得到最优解。找独立0元素,常元素,常用的步骤为:用的步骤为:(1)从只有一个从只有一个0元素的行元素的行(列列)开始,给这个开始,给这个0元素加元素加圈,记作圈,记作。然后划去。然后划去 所在列所在列(行行)的其它的其它0元素,记元素,记作作;这表示这列所代表的任务已指派完,不必再考;这表示这列所代表的任务已指派完,不必再考虑别人了。虑别人了。(2)给只有一个给只有一个0元素的列元素的列(行行)中的中的0元素加圈,记作元素加圈,记作;然后划去;然后划去 所在行的所在行的0元
8、素,记作元素,记作 (3)反复进行反复进行(1),(2)两步,直到尽可能多的两步,直到尽可能多的0元素都元素都被圈出和划掉为止。被圈出和划掉为止。(4)若仍有没有划圈的若仍有没有划圈的0元素,且同行元素,且同行(列列)的的0元素至元素至少有两个,则从剩有少有两个,则从剩有0元素最少的行元素最少的行(列列)开始,比较这开始,比较这行各行各0元素所在列中元素所在列中0元素的数目,选择元素的数目,选择0元素少的那列元素少的那列的这个的这个0元素加圈元素加圈(表示选择性多的要表示选择性多的要“礼让礼让”选择性选择性少的少的)。然后划掉同行同列的其它。然后划掉同行同列的其它0元素。可反复进行,元素。可反
9、复进行,直到所有直到所有0元素都已圈出和划掉为止。元素都已圈出和划掉为止。(5)若)若 元素的数目元素的数目m 等于矩阵的阶数等于矩阵的阶数n,那么这指,那么这指派问题的最优解已得到。若派问题的最优解已得到。若m n,则转入下一步。则转入下一步。第三步:作最少的直线覆盖所有第三步:作最少的直线覆盖所有0元素。元素。(1)对没有对没有的行打的行打号;号;(2)对已打对已打号的行中所有含号的行中所有含元素的列打元素的列打号;号;(3)再对打有再对打有号的列中含号的列中含 元素的行打元素的行打号;号;(4)重复重复(2),(3)直到得不出新的打直到得不出新的打号的行、列为止;号的行、列为止;(5)对
10、没有打对没有打号的行画横线,有打号的行画横线,有打号的列画纵线,号的列画纵线,这就得到覆盖所有这就得到覆盖所有0元素的最少直线数元素的最少直线数 l。l 应等于应等于m,若不相等,说明试指派过程有误,回到第二步若不相等,说明试指派过程有误,回到第二步(4),另,另行试指派;若行试指派;若 lm n,须再变换当前的系数矩阵,须再变换当前的系数矩阵,以找到以找到n个独立的个独立的0元素,为此转第四步。元素,为此转第四步。第四步:变换矩阵第四步:变换矩阵(bij)以增加以增加0元素。元素。在没有被直线覆盖的所有元素中找出最小元素,然后在没有被直线覆盖的所有元素中找出最小元素,然后打打各行都减去这最小
11、元素;打各行都减去这最小元素;打各列都加上这最小元各列都加上这最小元素(以保证系数矩阵中不出现负元素)。新系数矩阵素(以保证系数矩阵中不出现负元素)。新系数矩阵的最优解和原问题仍相同。转回第二步。的最优解和原问题仍相同。转回第二步。例一:例一:任务任务人员人员ABCD甲甲215134乙乙1041415丙丙9141613丁丁78119 9118713161491514410413152 241047501110062111302497 00102350960607130 2410475011100621113042 00102350960607130 0100000100101000 有一份中文
12、说明书,需译成英、日、德、俄四种有一份中文说明书,需译成英、日、德、俄四种文字,分别记作文字,分别记作A、B、C、D。现有甲、乙、丙、丁四。现有甲、乙、丙、丁四人,他们将中文说明书译成不同语种的说明书所需时人,他们将中文说明书译成不同语种的说明书所需时间如下表所示,问如何分派任务,可使总时间最少?间如下表所示,问如何分派任务,可使总时间最少?任务任务人员人员ABCD甲甲67112乙乙4598丙丙31104丁丁5982例二、例二、求解过程如下:求解过程如下:第一步,变换系数矩阵:第一步,变换系数矩阵:2142 289541013895421176)(ijc 0673390245100954 01
13、733402401004545第二步,试指派:第二步,试指派:17334241454 找到找到 3 3 个独立零元素个独立零元素 但但 m m=3 3 n=4 第三步,作最少的直线覆盖所有第三步,作最少的直线覆盖所有0 0元素:元素:17334241454独立零元素的个数独立零元素的个数m等于最少直线数等于最少直线数l,即,即lm=3n=4;第四步,变换矩阵第四步,变换矩阵(bij)以增加以增加0 0元素:没有被直线元素:没有被直线覆盖的所有元素中的最小元素为覆盖的所有元素中的最小元素为1 1,然后打,然后打各行都减各行都减去去1 1;打;打各列都加上各列都加上1 1,得如下矩阵,并转第二步进
14、,得如下矩阵,并转第二步进行试指派:行试指派:6244251343000 0 00 0100001000011000得到得到4 4个独个独立零元素,立零元素,所以最优解所以最优解矩阵为:矩阵为:17334241454 0624425134315 6244251343练习:练习:115764戊戊69637丁丁86458丙丙9117129乙乙118957甲甲EDCBA费费 工作工作 用用人员人员4347511576469637964589117129118957 7132036304520142405263402-1-2 5032015304310140305242402 503201530431
15、0140305242402 5032015304310140305242402l=m=4 n=5 5032015304310140305242402 5033004203310240306231301 5033004203310240306231301 5033004203310240306231301 5033004203310240306231301l=m=4 n=5 5033004203310240306231301 6044003202300230206130300 6044003202300230206130300 6044003202300230206130300此问题有多个最优解此问题有多个最优解28 6044003202300230206130300 6044003202300230206130300用匈牙利法求解下列指派问题,已知效率矩用匈牙利法求解下列指派问题,已知效率矩阵分别如下:阵分别如下:79 10 1213 12 16 1715 16 14 1511 12 15 163821038729764275842359106910祝您成功!