1、 1 五年级下册第三单元因数和倍数五年级下册第三单元因数和倍数 1. 左图涂色部分用分数表示是( ) ,分 数单位是( ) ,去掉( )个这 样的分数单位就等于最小的素数。 (综 合) 2.6 和 7 的最大公因数是 ( ) , 12 和 18 的最小公倍数是 ( ) 。 3.一些糖果,平均分给 6 个人或 4 个人,都正好分完,这些糖果至 少有( )块。 4.如果 a b 是最简分数,a与b有几个公因 数?( ) 只有 1 个 有a和b这两个 有两个以上 5. 两根钢管,分别长 12 米和 9 米,如果要截成同样长的小段,而且 没有剩余,每段最长是( ) 1 米 36 米 3 米 6.在 1
2、20 中,既是合数,又是奇数的有( )个。 A.1 B.2 C.3 D.4 7.最小的质数乘最小的合数,积是( ) 。 A.4 B.26 C.8 D.10 8.从 9、1、0、5 这 4 个数字中,任意选 3 个可组成( )个 2、5、 3 倍数的三位数。 A.2 B.4 C.6 D.8 9.如果两个数的积是偶数,那么这两个数( ) 。 A.都是偶数 B.都是奇数 C.至少有一个是偶数 10.如果 =3(不等于 0) ,那么 和的最大公因数是( ) 。 A. B. C.3 D. 11.两根铁丝,一根长 24 厘米,另一根长 32 厘米,要把它们剪成同 样长的小段,且没有剩余(每段长都是整厘米数
3、) ,每一段的铁丝不 可能是( )厘米。 A.2 B.4 C.6 D.8 12.一个两位数,个位和十位上都是合数,且这两个合数的最大公因 数是 1.这个两位数可能是( ) 。 A.88 B.87 C.89 13.一个数的因数不一定比它的倍数小。 ( ) 2 14.两个不同质数的乘积一定是合数。 ( ) 15.一个带分数,整数部分是最小的偶数,分子是最小的奇数,分母 是一位数中最大的质数,这个带分数是( ) ,它的分数单位是 ( ) 。 (综合) 16.已知一个三位数 8,它是 2,3,5 的倍数,这个三位数最大是 ( ) 。 17.用一些长 6 厘米、宽 4 厘米的长方形木片拼成一个正方形,至
4、少 需要( )块。 18.有三张正方形纸,边长分别是 6 分米、18 分米和 24 分米。如果 想裁剪成长 4 分米、宽 3 分米的长方形小纸片,且没有剩余。裁剪边 长为多少分米的正方形纸比较合适,能够裁剪多少张? 19.一个数的最小倍数减去它的最大因数,差是( )。 20.如果a是b的倍数,那么a和b的最小公倍数是多少? a b a b 21.学校图书室在新华书店买了一些图书,如果每10本一包,能够正 好包完。如果16本一包,也能正好包完。图书室至少买了多少本 图书? 60本 80本 160本 22.把上面右边长16厘米、宽12厘米的长方形纸,裁成同样大小的正 方形。 要使正方形的面积尽可能
5、大, 且纸没有剩余, 可以裁 ( ) 个。 在图上画一画,并填出答案。(2分) 23.3a=b(a、b 都是非零的自然数),a 和 b 的最大公因数是( ) A 1 B a C b 24.下列( )组既有公因数 2,又有公因数 3。 A、24 和 42 B、10 和 35 C、30 和 40 D、6 和 27 25.一张长 24 厘米,宽 18 厘米的长方形纸,要分成大小相等的小正 方形,且没有剩余,最少可以分成( )个。 A、12 个 B、15 个 C、9 16 厘米 12 厘米 3 个 D、6 个 26.两个数的最大公因数是 4,最小公倍数是 24,这两个数不可能是 ( )。 A. 4 和
6、 24 B. 8 和 12 C. 8 和 24 27.如果 a-b=1,那么 a 和 b 的最大公因数是( ) A、a B、 1 C、b 28.一个质数加 1 后,和是( ) 。 A、奇数 B、偶数 C、奇数或偶数 D、无法讨论 29.新图书馆开馆了,小红每隔 3 天去图书馆一次,小灵每隔 4 天去 一次,如果小红和小灵某天在图书馆相遇后,请问最少再经过 ( )天她们有可能会在图书馆再次相遇。 A、8 B、12 C、16 D、24 30.已知 23 除以 a 商是整数,没有余数,那么 a 是( ) 。 (1)46 (2)23 (3)1 或 23 (4)0 31.a+1=b (a和b是不为0的自
7、然数) , a和b的最小公倍数是 ( ) (1)a (2)b (3)ab (4)1 32. 7 3 1的分数单位是( ) ,它有( )个这样的分数单位, 如果再加上( )个这样的分数单位就是最小的质数。(综合) 33.两个连续偶数的和是 10,这两个数的最大公因是数( ) ,最 小公倍数是( ) 。 34.三个连续偶数,中间一个数是 n,三个数的和是( ) 。 35.一个三位数能同时被 2、3、5 整除,它的百位上的数字是最小的 奇数,十位上的数字是百位上数字的 2 倍,这个数是( ) 。 36.在 100 以内,既是 3 的倍数,又含有因数 5 的最大奇数是( ) A 、95 B 、75 C
8、、 85 37.a 是大于 0 的自然数, b=a+1, 那么 a 和 b 的最小公倍数是 ( ) . Aa Bb Cab 38.任何两个不是 0 的自然数,它们都有公因数 1. ( ) 39.两个数的最大公因数不可能比这两个数大 ( ) 4 40.张叔叔和李叔叔经常去同一个游泳馆游泳,张叔叔每 4 天去一 次,李叔叔每 6 天去一次。5 月 30 日他们两人同时去游泳了,几月 几日他们又再次相遇? 41.用长 8dn,宽 6dm 的长方形地砖铺一个正方形地面。正方形的边 长至少是多少 dm?需要多少块? 42.任何两个自然数的( )的个数是无限的。 A公倍数 B.公因数 C.倍数 D.因数
9、43.a+1=b (a、 b 为非 0 的自然数), a 和 b 的最小公倍数是 ( ) 。 A.a B.b C.1 D.ab 44.一个最简真分数,分子分母的和是 20,这样的最简真分数有 ( )个。 A.2 B.3 C.4 D.5 45.下列说法不正确的是( ) 。 A.两个数的最小公倍数一定是它们的最大公因数的倍数。 B.如果 A 是 B 的倍数,那么 A 和 B 的最大公因数是 B。 C.12 和 18 的公倍数有 6 个。 D.两个数的公因数只有 1,它们的最小公倍数就是它们的乘积。 46.最小的合数是( ) 。 A. 1 B. 2 C.3 D.4 47.100 以内,既是 2 和
10、3 的倍数,又是 5 的倍数的最大的数是 ( ) 。 A. 30 B. 60 C.90 D.99 48.有两根木棒,长度分别是 8 厘米和 12 厘米,现把它们锯成长度相 等的小段而没有剩余,每段小棒最长是( ) 厘米。 A. 1 B. 2 C.4 D.6 49.小王每 6 天去一次图书馆,小张每 4 天去一次图书馆,他们今天 同时去图书馆, ( )天以后它们同时去图 2.书馆。 A. 4 B. 6 C.8 D.12 50.如果 a、b 是两个连续的自然数(且 a、b 都不为 0) ,它们的最大 公因数是( ) ,最小公倍数是( ) 。如果 a、b 是两 个非零的自然数, 且 a 是 b 的倍
11、数, 它们的最大公因数是 ( ) , 最小公倍数是( ) 。 26 至少增加( )就是 3 的倍数,至少减少( ) 就是 5 的倍数。 5 52.一个数的因数最大是 36,这个数的因数有 ( )。 53.写出三组最大公因数是 9 的数。 ( )和( ),( )和( ), ( )和( ), 54.两个数的最大公因数是 14,它们的最小公倍数一定是 14。 ( ) 55.一张长 18 厘米,宽 12 厘米的长方形纸,要分成大小相等的小正 方形,且没有剩余。最少可以分成( ) 。 A. 12 个 B.15 个 C. 6 个 56.两个数的最大公因数是 4,最小公倍数是 24,这两个数不可能是 ( )
12、。 A. 4 和 24 B. 8 和 12 C. 8 和 24 57.如果 a-b=1,那么 a 和 b 的最大公因数是( ) A、a B、 1 C、b 58.有两根彩带,一根长 30 厘米,另一根长 16 厘米。现在要把它们 剪成长度一样的短彩带且没有剩余,每根短彩带最长是多少厘米? 59.16 和 18 的最大公因数是( ) ,最小公倍数是( ) 60.最简分数的分子分母没有公因数。 ( ) 61.5 9 的分数单位是 ( ) , 有 ( ) 个这样的分数单位, 再添上 ( ) 个这样的分数单位就是最小的素数。 (综合) 62.两个连续的偶数的和是 34,这两个数的最大公因数是( ) ,最
13、小 公倍数是( ) 。 把一张长 60 厘米、宽 45 厘米的长方形纸片剪成同样大小的正方形, 没有剩余,正方形要尽可能大。剪成的正方形的边长是多少厘米?可 以剪成这样的正方形多少个? 63. 7 3 1的分数单位是( ) ,它有( )个这样的分数单位,如 果再加上( )个这样的分数单位就是最小的质数。 (综合) 64.两个连续偶数的和是 10,这两个数的最大公因是数( ) ,最小 公倍数是( ) 。 6 65.x-1=y(x 和 y 是不为零的自然数), x 和 y 的最大公因数是( ) , 最小公倍数是( ) 。 66.学校买来若干个足球。如果把这些足球平均分给 8 个班,余 5 只。 如
14、果把这些足球平均分给 10 个班,余 7 只。学校至少买来( ) 只篮球? 67.用长 8dn,宽 6dm 的长方形地砖铺一个正方形地面。正方形的边长 至少是多少 dm?需要多少块? 68.1 是( ) ,0 是( ) 。 A、质数 B、偶数 C、合数 D、奇数 69.一个偶数与一个奇数相乘的积是( ) 。 A、偶数 B、奇数 C、质数 D、合数 70.A 和 B 都是质数,那么 A 和 B 的积一定是( ) 。 A、质数 B、偶数 C、合数 D、奇数 71.属于因数和倍数关系的等式是( ) 。 A、2025=05 B、225=50 C、20=0 72.一个数的最大因数与最小倍数相加的和是 6
15、2,这个数是( ) 。 A、 26 B、62 C、31 D、不能确定 73.用 8、5、2 任意组合成的三位数一定是( ) A、能被 2 整除 B、能被 3 整除 C、能被 5 整除 D、能被 2 和 5 整除 74.18 的倍数有( )个。 A . 4 B . 6 C 无数 75.a 和 b 的最小公倍数是 a,则 a 和 b 的最大公约数是( )。 A、 a B、 b C ab 76.方形纸片长 20 厘米,宽 16 厘米,它最多能剪下( )个半径 是 4 厘米的圆形纸片。 A、4 B、6 C、8 77.2 是 12 和 16 的( ) A 公倍数 B 公因数 C 最小公倍数 D 最大 公
16、因数 78.两个数的公倍数总是( )它们的公因数。 A大于 B 小于 C 等于 D 不小 于 79.100 以内 3 和 5 的公倍数中最大的是( ) 7 A 75 B 90 C 95 D 96 80.12 和 18 的最大公因数是( ) ,最小公倍数是( ) 81.最简分数的分子分母没有公因数。 ( ) 82.暑假期间,小林每 4 天游泳一次,小军每 6 天游泳一次,7 月 23 日两人在游泳池相遇,他们再次相遇是几月几日? 83.在一个圆中, 半径和直径的最大公因数是( ),最小公倍数是 ( )。 84.一个最简真分数, 它的分子、 分母的乘积是 12, 这个分数是( ) 或( )。 85
17、.在 l9 的自然数中,( )不是偶数,但是合数;( )既 不是素数,也不是合数。 86.120 分解质因数:120=2345 ( ) 87.一个数最小的倍数和它的最大的因数是相等的。 ( ) 88.任意两个数的最小公倍数与最大公因数的乘积一定等于这两个数 的乘积。 ( ) 89.a 和 b 的最小公倍数是 ab,则 a 和 b 的最大公因数是( )。 Aa Bb CAb 90.求下面每组数的最大公因数和最小公倍数。 2l 和 8 36 和 8l 91.希腊人心目中最理想、最完全的数恰好有这个数的所有因数(本 身除外)相加之和。比如:6 有四个因数 1、2、3、6,除去本身 6 以 外,还有
18、1、2、3 三个因数。6=1+2+3,恰好是所有因数之和,所以 6是最理想、 最完全的数。 这样的数被叫做 “完全数” 。 下面数中 ( ) 是完全数。 A. 28 B. 10 C. 36 D. 8 92.36 个红球与 24 个黄球,分别装在同一种盒子里,每盒球色、数 量均相同,如果每种球正好装完,每盒最多能装( )个。 A. 4 B. 6 C. 12 D. 18 93用一套长 20 厘米的铁丝围成一个长方形, 要求长和宽都是质数, 它的面积是( )平方厘米。 20 15 21 39(综合) 94.3 和 15 都是 15 的( ) 。 A、倍数 B、因数 C、质因数 D、除数 8 95.2
19、3 的倍数是( )。 A、合数 B、质数 C、可能是合数,也可能是质数 D、 96.如果 35 是 3 的倍数,那么 里可能是( )。 A、1、4、7 B1、4 C4、7 D、2、4 97.大于 1 的自然数的因数至少有( )个。 A、1 B、2 C、3 D、6 98.一个数既是6的倍数, 又是36的因数, 符合条件的数一共有 ( ) 个。 A、 、2 B、3 C、4 D、6 99.非零自然数a、b,他们的最大公因数是 1,那么a、b的最小公倍 数是( ) 。 A、 a B、 b C、 ab D、a+b 100.某公交 11 路车和 2 路车早上 6 时同时从 A 站发车, 11 路每隔 10
20、 分钟发一辆车,2 路车每隔 15 分钟发一辆车。这两路车第三次同时 发车是什么时刻? 101.暑假期间,小林和小军都去参加游泳训练。小林每 4 天去一次, 小军每6天去一次。 7月31日两人同时参加游泳训练, ( 月 日) 他们又再次相遇。 102.有两根圆木,一根长 12 米,另一根长 21 米。要把它们截成同样 长的小段,且没有剩余,每小段圆木最长( )米,可以截成 ( )段。 103.学校在新华书店买了一些图书, 如果每10本一包, 能够正好包完。 如果16本一包,也能正好包完。图书室至少买了( )本图书? 60本 80本 160本 104.a和b都为非0自然数,且a = 7b。a与b
21、的最大公因数是( )。 7 a b 105.分数单位是 17 的最大真分数是( ) ,最小假分数是 ( ) ,把这个 106.假分数再添上( )个这样的分数单位就 是最小的素数 (综合) 106.自然数 a 和 b 的最大公因数是 1,那 a 和 b 的最小公倍数是 ( ) 。5 和 10 的最大公因数是( ) ,最小公倍数是 ( ) 。 107.用边长(整分米数) ( )分米、 ( )分米、 ( )分米 的正方形都能正好铺满长 16 分米、宽 12 分米的长方形。 9 108.求下列各组数的最大公因数与最小公倍数,在()里写每组的最 大公因数,在里写每组的最小公倍数。 8 和 12 11 和
22、 33 ( ) ( ) 109.下面哪句话是正确的。 12 和 45 有公因数 2 12 和 45 有公因数 3 12 和 45 有公因 数 1 110.26 至少增加 ( ) 就是 3 的倍数, 至少减少 ( ) 就是 5 的倍数。 111.一个数的因数最大是 36,这个数的因数有 ( )。 112.两个数的最大公因数是 14,它们的最小公倍数一定是 14。 ( ) 113.一张长 18 厘米,宽 12 厘米的长方形纸,要分成大小相等的小正 方形,且没有剩余。最少可以分成( ) 。 A. 12 个 B.15 个 C. 6 个 114.两个数的最大公因数是 4,最小公倍数是 24,这两个数不可
23、能是 ( )。 A. 4 和 24 B. 8 和 12 C. 8 和 24 115.如果 a-b=1,那么 a 和 b 的最大公因数是( ) A、a B、1 C、b 116.有两根彩带,一根长 30 厘米,另一根长 16 厘米。现在要把它们 剪成长度一样的短彩带且没有剩余,每根短彩带最长是多少厘米? 117.一个数既是 4 的倍数,又是 9 的倍数,这个数最小是( )。 118.在括号里填上合适的质数。 36( )( )( )( ) 35( ) ( )( ) 119. 2 11 的分数单位是( ),有( )个这样的单位,至少再添 ( )个这样的单位就能得到最小的质数。 (综合) 120.8 和
24、 24 的最小公倍数是( ), 最大公因数是( ) 121.两个非 0 的连续自然数的最小公倍数就是它们的 积。 ( ) 10 122.一个数的最小倍数减去它的最大因数,差是( )。 123.如果a是b的倍数,那么a和b的最小公倍数是多少? a b a b 124.学校图书室在新华书店买了一些图书,如果每10本一包,能够正 好包完。如果16本一包,也能正好包完。图书室至少买了多少本 图书? 60本 80本 160本 125.下面每组两个数中,既有公因数 2,又有公因数 3 的是( ) A10和24 B6 和 43 C42 和 18 D22 和 30 126.自然数 a 和 b 的最大公因数是
25、1,那 a 和 b 的最小公倍数是 ( )。 127 在( )里填上合适的质数。 20=( )+( ) 42=( )( )( ) 30=( )+( )=( )+( )=( )+( ) 128.在( )里写每组的最大公因数, 在 里写每组的最小公倍数。 (4 分) 8 和 12 11 和 33 ( ) ( ) 129.2 6 5 的分数单位是( ) ,它有( )这样的分数单位。再 加( )这样的分数单位就是最小的合数。 (综合) 130.用长 12 厘米、宽 8 厘米的小长方形来拼一个正方形,至少需要 ( )个这样的长方形。 131.x335,y=2357,那么 x 和 y 的最大公约数是( )
26、, 最小公倍数是( ) 132.两个连续偶数的和是 18,这两个数的最大公因数是( ),最 小公倍数是( )。 133.一张长 75 厘米、宽 60 厘米的长方形纸,要把它裁成同样大小的 正方形, 边长为整厘米, 且没有剩余, 裁成的正方形边长最大是多少? 至少可以裁成多少个这样的正方形? 134. m、n 是非零自然数,mn=11,那么 m 和 n 的最大公因数是 ( ) A 1 B mn C m D n 11 135.一个数它既是 18 的倍数,又是 18 的约数,这个数是( ) A 1 B 9 C 18 D 324 136.一张长 24 厘米,宽 18 厘米的长方形纸,要分成大小相等的小
27、正 方形,且没有剩余最少可以分成( ) A.12 B.15 C.9 D.6 137.甲数=235A,乙数=237A,当 A=( )时,甲、 乙两数的最小公倍数是 630 A.2 B.3 C.5 D.7 138.a 和 b 都是自然数, 且0.3a=b, 那么a 和 b 的最小公倍数是 ( ) A a B b C ab D 无数判断 139.下面说法正确的是( ) A 5 是 15 和 60 的最大公约数 B 只有两个角是锐角的三角形不一定是锐角三角形 C 因为 630=0.2,所以 30 能整除 6 D50 分解质因数是 1255 140.A.=23a,B=2a7,已知 A、B 的最大公约数是
28、 6,那么 a= ( ) ;A 和 B 的最小公倍数是( ) 。 两根长分别是 60、36 厘米的绳子截成相同的小段,不许剩余,每段 最多长( )厘米 141.一排电线杆, 原来每两根之间的距离是 30 米, 现在改为 4 米 如 果起点的一根电线杆不移动,至少再隔 ( )米又有一根电 线杆不需要移动 142.用一些长 3 厘米,宽 2 厘米的长方形木片拼成一个正方形,至少 需( )片。 A、6 B、12 C、8 D、16 143.在四位数 210 的方框中填入一个数字,使它同时是 2、3、5 的 倍数,最多有( )填法。 A、2 B、3 C、4 D、5 144.如果 a-b=c, (a、b、
29、c 都是不等于 0 的自然数) ,那么下列表述 中不正确的是( ) A、a 是 c 的倍数 B、b 与 c 都是 a 的因数 C、b 是 c 的倍数 D、a 是 b 的倍数 145.20 以内的自然数中(包括 20) ,既是合数又是奇数的数有 ( )个。 A、10 B、5 C、3 D、4 12 146.两个数的乘积一定是他们的( ) A、因数 B、 公倍数 C、最小公倍数 D、最大公因数 147.用 36 个边长 1 厘米的正方形拼成长方形,有( )种不同的拼 法。 A、5 B、6 C、4 148.两个合数的最大公因数是,最小公倍数是,这两个数是 ( )和( ) 。 . 1和144 . 8和1
30、8 .9 和16 149.在四位数 12 中的方框里填上数字,使它能同时被 2、3、5 整除,最多有( )种填法。 A.2 B.3 C.4 D.5 150.正方形的边长是质数,它的面积是( ) 。 A.质数 B.合数 C.既不是质数也不是合数 D无法确定 151. 两个合数的最大公因数是,最小公倍数是,这两个数是 ( )和( ) 。 A1 和 144 B 8 和 18 C 9 和 16 152.用 0、1、2 三个数字组成的所有三位数中,同时是 2、3、5 的倍 数的数有( )和( ) 。 153.如果 a+1=b,那么 a 与 b 的最大公因数是( ) ,最小公倍数 是( ) ;如果 a=b
31、3,那么它们的最大公因数是( ) ,最小 公倍数是( ) 。 154. 4 和 3 的公倍数也是 6 的倍 数。( ) 155.一个自然数个位上是 3、 6、 9, 这个数就是 3 的倍数。 ( ) 156.非 0 自然数中,除去合数就是质 数。( ) 157.任何两个自然数的( )的个数是无限的。 A公倍数 B公因数 C倍数 158.两个数的最大公因数是 15,最小公倍数是 90,这两个数一定不 是( ) 。 A15 和 90 B45 和 90 C45 和 30 13 159.一个长方形的池塘,如果在它的四周及四角栽上风 景树,每相邻两棵树之间的距离要相等,那么最多每 几米栽一棵?需要栽多少棵? 160.有 35 个苹果和 34 个梨,平均分给舞蹈队的小朋友,结果苹果多 了 3 个,梨少了 6 个。舞蹈队有多少个小朋友? 42 米 54 米 14