1、课题:圆锥的体积练习教学内容:练习四4-12题教学目标:1.通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。2.通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。3.进一步培养学生将所学知识运用和服务于生活的能力。教学重点:灵活运用圆柱圆锥的有关知识解决实际问题教学难点:灵活运用圆柱圆锥的有关知识解决实际问题。教学准备:多媒体课件教学过程: 一、复习铺垫、内化知识1.圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。独立完成第五题:(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立
2、方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是( )立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。 二、基础练习,完成练习1.练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料, 圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成第6题。讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?4.独立完成第7、8、9、10题全班交流:重点说一说每题解题思路。5.讨论第11题蒙古包所占空间的大小的方法。(1)蒙古包是由哪几个部分组成的?(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。 三、全课总结,内化知识1.提问:(1)同学们掌握了圆锥体的哪些知识?(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?2.学有余力的同学思考思考题。 四、布置作业 加油充电 补充习题