1、附件附件: : 图图 4 连杆机构计算程序连杆机构计算程序 !本程序用于图 4 连杆机构运动分析,输出 G 点的位置、速度、加速度 !若要绘制从动件的位移、速度、加速度曲线,见附件-“在 TB 中绘制 SVA 三曲线”以 及附件-“在 ACAD 中绘制 SVA 三曲线” !若要将图 4 连杆机构从动件的位移、速度、加速度具体数值打印出来,见附件-“如何 将 TRUE BASIC 的输出数值打印出来” OPTION NOLET FOR I=0 TO 360 STEP 2 CALL LINK(0, 0, 0, 0, 0, 0, I*PI/180, 10, 0, 14, XD, YD, VDX, V
2、DY, ADX, ADY) CALL RRR(XD, YD, VDX, VDY, ADX, ADY, 41, 0, 0, 0, 0, 0, 39, 28, QDA, W3, E3, QBA, W2, E2) QDC=QDA+35*PI/180 CALL LINK(XD, YD, VDX, VDY, ADX, ADY, QDC, W3, E3, 15, XC, YC, VCX, VCY, ACX, ACY) CALL RPR(0, 0, -34, 0, 0, 0, 0, XC, YC, VCX, VCY, ACX, ACY, 0, QFG, W4, E4) CALL LINK(0, -34, 0
3、, 0, 0, 0, QFG, W4, E4, 55, XG, YG, VGX, VGY, AGX, AGY) PRINT I, QFG*180/PI, W4, E4, XG, YG, VGX, VGY, AGX, AGY NEXT I END SUB LINK(XA, YA, VAX, VAY, AAX, AAY, QAB, W, E, L, XB, YB, VBX, VBY, ABX, ABY) XB=XA+L*COS(QAB) YB=YA+L*SIN(QAB) VBX=VAX-L*SIN(QAB)*W VBY=VAY+L*COS(QAB)*W ABX=AAX-L*COS(QAB)*W2-
4、L*SIN(QAB)*E ABY=AAY-L*SIN(QAB)*W2+L*COS(QAB)*E END SUB SUB RRR(XA, YA, VAX, VAY, AAX, AAY, XC, YC, VCX, VCY, ACX, ACY, LAB, LCB, QAB, WAB, EAB, QCB, WCB, ECB) LAC=SQR(XC-XA)2+(YC-YA)2) COSQAC=(XC-XA)/LAC SINQAC=(YC-YA)/LAC QAC=ANGLE(COSQAC,SINQAC) COSQCBA=(LAB2+LAC2-LCB2)/(2*LAB*LAC) SINQCBA=SQR(1-
5、COSQCBA2) QCBA=ANGLE(COSQCBA,SINQCBA) QAB=QAC-QCBA XB=XA+LAB*COS(QAB) YB=YA+LAB*SIN(QAB) COSQCB=(XB-XC)/LCB SINQCB=(YB-YC)/LCB QCB=ANGLE(COSQCB,SINQCB) WAB=(VAX-VCX)*COSQCB+(VAY-VCY)*SINQCB)/LAB/SIN(QAB-QCB) WCB=(VAX-VCX)*COS(QAB)+(VAY-VCY)*SIN(QAB)/LCB/SIN(QAB-QCB) G=AAX-ACX-LAB*COS(QAB)*WAB2+LCB*C
6、OSQCB*WCB2 F=AAY-ACY-LAB*SIN(QAB)*WAB2+LCB*SINQCB*WCB2 EAB=(G*COSQCB+F*SINQCB)/LAB/SIN(QAB-QCB) ECB=(G*COS(QAB)+F*SIN(QAB)/LCB/SIN(QAB-QCB) END SUB SUB RPR(M, XA, YA, VAX, VAY, AAX, AAY, XC, YC, VCX, VCY,ACX,ACY, LAB,QBD,W,E) LAC=SQR(XC-XA)2+(YC-YA)2) COSQAC=(XC-XA)/LAC SINQAC=(YC-YA)/LAC QAC=ANGLE(
7、COSQAC,SINQAC) LBC=SQR(LAC2-LAB2) QACB=ATN(LAB/LBC) QBD=QAC+M*QACB DELTA=-(YC-YA)*SIN(QBD)-(XC-XA)*COS(QBD) DELTAW=(VCX-VAX)*SIN(QBD)-(VCY-VAY)*COS(QBD) DELTAV=-(YC-YA)*(VCY-VAY)-(XC-XA)*(VCX-VAX) W=DELTAW/DELTA VLBC=DELTAV/DELTA T1=(ACX-AAX)+(VCY-VAY)*W+SIN(QBD)*W*VLBC T2=(ACY-AAY)-(VCX-VAX)*W-COS(QBD)*W*VLBC DELTAE=T1*SIN(QBD)-T2*COS(QBD) E=DELTAE/DELTA END SUB