第二板误差理论课件1.ppt

上传人(卖家):晟晟文业 文档编号:5207634 上传时间:2023-02-17 格式:PPT 页数:65 大小:327.86KB
下载 相关 举报
第二板误差理论课件1.ppt_第1页
第1页 / 共65页
第二板误差理论课件1.ppt_第2页
第2页 / 共65页
第二板误差理论课件1.ppt_第3页
第3页 / 共65页
第二板误差理论课件1.ppt_第4页
第4页 / 共65页
第二板误差理论课件1.ppt_第5页
第5页 / 共65页
点击查看更多>>
资源描述

1、章测量误差及数据处理 .1 测量误差的分类和测量结果的表征.2 测量误差的估计和处理 .3 测量数据处理.1 测量误差的分类和测量结果的表征.1.1 测量误差的分类根据测量误差的性质,测量误差可分为随机误差、系统误差、粗大误差三类。1.随机误差定义:在同一测量条件下(指在测量环境、测量人在同一测量条件下(指在测量环境、测量人员、测量技术和测量仪器都相同的条件下),多次员、测量技术和测量仪器都相同的条件下),多次重复测量同一量值时(等精度测量),每次测量误重复测量同一量值时(等精度测量),每次测量误差的绝对值和符号都以不可预知的方式变化的误差,差的绝对值和符号都以不可预知的方式变化的误差,称为随

2、机误差或偶然误差,简称随差。称为随机误差或偶然误差,简称随差。随机误差主要由对测量值影响微小但却互不相关的由对测量值影响微小但却互不相关的大量因素共同造成。大量因素共同造成。这些因素主要是噪声干扰、电磁场微变、零件的摩擦和配合间隙、热起伏、空气扰动、大地微震、测量人员感官的无规律变化等。.1.1 测量误差的分类(续)例:对一不变的电压在相同情况下,多次测量得到 1.235V,1.237V,1.234V,1.236V,1.235V,1.237V。单次测量的随差没有规律,但多次测量的总体却服从统计规律统计规律。可通过数理统计的方法来数理统计的方法来处理,即求算术平均值1211nniixxxxxnn

3、 u随机误差定义:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。iixx()n.1.1 测量误差的分类(续)2.系统误差定义:在同一测量条件下,多次测量重复同一量时,测量误差的绝对值和符号都保持不变,或在测量条件改绝对值和符号都保持不变,或在测量条件改变时按一定规律变化变时按一定规律变化的误差,称为系统误差。例如仪器的刻度误差和零位误差,或值随温度变化的误差。产生的主要原因是仪器的制造、安装或使用方法不正确,环境因素(温度、湿度、电源等)影响,测量原理中使用近似计算公式,测量人员不良的读数习惯等。系统误差表明了一个测量结果偏离真值或实际值的程测量结果偏离真值或实际

4、值的程度度。系差越小,测量就越准确。系统误差的定量定义是:在重复性条件下,对同一被在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真测量进行无限多次测量所得结果的平均值与被测量的真值之差。即值之差。即0 xA.1.1 测量误差的分类(续)3.粗大误差:粗大误差是一种显然与实际值不符的误差。产生粗差的原因有:测量操作疏忽和失误 如测错、读错、记错以及实验条件未达到预定的要求而匆忙实验等。测量方法不当或错误 如用普通万用表电压档直接测高内阻电源的开路电压测量环境条件的突然变化 如电源电压突然增高或降低,雷电干扰、机械冲击等引起测量仪器示值的剧烈变化等。含有粗差的测量值称为坏值

5、或异常值坏值或异常值,在数据数据处理时,应剔除掉处理时,应剔除掉。4.系差和随差的表达式在剔除粗大误差后,只剩下系统误差和随机误差各次测得值的绝对误差等于系统误差和随机误差各次测得值的绝对误差等于系统误差和随机误差的代数和。的代数和。在任何一次测量中,系统误差和随机误差一般都是同时存在的。系差和随差之间在一定条件下是可以相互转化。iiiixAxxxAx.1.2 测量结果的表征 准确度准确度表示系统误差的大小表示系统误差的大小。系统误差越小,则准确度越高,即测量值与实际值符合的程度越高。精密度精密度表示随机误差的影响表示随机误差的影响。精密度越高,表示随机误差越小。随机因素使测量值呈现分散而不确

6、定,但总是分布在平均值附近。精确度精确度用来反映系统误差和随机误差的综合影响用来反映系统误差和随机误差的综合影响。精确度越高,表示正确度和精密度都高,意味着系统误差和随机误差都小。射击误差射击误差示意图示意图 .1.2 测量结果的表征(续)测量值|xA 是粗大误差是粗大误差4x.2 测量误差的估计和处理.2.1 随机误差的统计特性及减少方法在测量中,随机误差是不可避免的。随机误差是由大量微小的没有确定规律的因素引起的,比如外界条件(温度、湿度、气压、电源电压等)的微小波动,电磁场的干扰,大地轻微振动等。多次测量,测量值和随机误差服从概率统计规律。可用数理统计的方法,处理测量数据,从而减少随机误

7、差对测量结果的影响。.2.1随机误差的统计特性及减少方法(续)(1)随机变量的数字特征 数学期望数学期望:反映其平均特性反映其平均特性。其定义如下:X为离散离散型随机变量:X为连续连续型随机变量:1iipixE(X)dxxxpXE)()(.2.1随机误差的统计特性及减少方法(续)方差和标准偏差 方差是用来描述随机变量与其数学期望的分散程度。设随机变量X的数学期望为E(X),则X的方差定义为:D(X)=E(XE(X)2 标准偏差标准偏差定义为:标准偏差同样描述随机变量与其数学期望的分散程度,并且与随机变量具有相同量纲。)(XD .2.1随机误差的统计特性及减少方法(续)测量中的随机误差通常是多种

8、相互独立的因素造成的许多微小误差的总和。中心极限定理:假设被研究的随机变量可以表示为大量独立的随机变量的和,其中每一个随机变量对于总和只起微小作用,则可认为这个随机变量服从正态分布。为什么测量数据和随机误为什么测量数据和随机误差大多接近正态分布?差大多接近正态分布?.2.1随机误差的统计特性及减少方法(续)正态分布的概率密度函数和统计特性 随机误差的概率密度函数为:测量数据X的概率密度函数为:随机误差的数学期望和方差为:同样测量数据的数学期望E(X),方差D(X)2exp(21)(22 p2)(exp21)(22 xxp0)2exp(21)()(22 ddpE222222)2exp(21)()

9、0()(ddpED 2.2.1随机误差的统计特性及减少方法(续)正态分布时概率密度曲线 随机误差和测量数据的分布形状相同,因为它们的标准偏随机误差和测量数据的分布形状相同,因为它们的标准偏差相同,只是横坐标相差差相同,只是横坐标相差(a a)随随 机机 误误 差差(b b)测测 量量 数数 据据0)(p x xp p(x x)0 0图图 3 3 1 1 随随 机机 误误 差差 和和 测测 量量 数数 据据 的的 正正 态态 分分 布布 曲曲 线线随机误差具有:对称性随机误差具有:对称性 单峰性单峰性 有界性有界性 抵偿性抵偿性标准偏差意义 标准偏差是代表测量数据和测量误差分布离散程度的特征数。

10、标准偏差越小,则曲线形状越尖锐,说明数据越集中;标准偏差越大,则曲线形状越平坦,说明数据越分散。0)(p1 2 3 (3)测量误差的非正态分布 常见的非正态分布有均匀分布、三角分布、反正弦分布等。均匀分布:仪器中的刻度盘回差、最小分辨力引起的误差等;“四舍五入”的截尾误差;当只能估计误差在某一范围内,当只能估计误差在某一范围内,而不知其分布时,一般可假定均匀分布。而不知其分布时,一般可假定均匀分布。a bP(x)概率密度概率密度:均值均值:当当 时时,标准偏差标准偏差:当当 时,时,01)(abxpbxaxbxa ,2ba ba 32ab 3b ba 0 2.有限次测量的数学期望和标准偏差的估

11、计值 求被测量的数字特征,理论上需无穷多次无穷多次测量,但在实际测量中只能进行有限次有限次测量,怎么办?用事件发生的频度代替事件发生的概率,当用事件发生的频度代替事件发生的概率,当 则则nnxpxXEimiimiii 11)(令令n n个可相同的测试数据个可相同的测试数据x xi i(i=1.2,n)(i=1.2,n)次数都计为次数都计为1,1,当当 时,则时,则 niiniixnnxXE1111)(n n(1 1)有限次测量的数学期望的估计值)有限次测量的数学期望的估计值算术平均值算术平均值被测量被测量X X的数学期望,的数学期望,就是当测量次数就是当测量次数 时,各次测量值的算时,各次测量

12、值的算术平均值术平均值 n 规定使用算术平均值为数学期望的估计值,并作为最后的测量结果。即:算术平均值是数学期望的无偏估计值、一致估计值和最大似然估计值。niixnx11有限次测量值的算术平均有限次测量值的算术平均值比测量值更接近真值?值比测量值更接近真值?(2 2)算术平均值的标准偏差)算术平均值的标准偏差 故:算术平均值的标准偏差比总体或单次测量值的标准偏差小 倍。原因是随机误差的抵偿性。*)()()(1)(1)1()(222122122122nniiniixxxnxnxnx )(1)(1222XnXnn nXx)()(n(2)有限次测量有限次测量数据的标准偏差的估计值数据的标准偏差的估计

13、值残差:残差:实验标准偏差实验标准偏差(标准偏差的估计值),贝塞尔公式:标准偏差的估计值),贝塞尔公式:算术平均值标准偏差的估计值算术平均值标准偏差的估计值 :xxii niiniixxnnxs1212)(1111)(nxsxs)()(niixnx11算术平均值算术平均值:【例例】用温度计重复测量某个不变的温度,得用温度计重复测量某个不变的温度,得1111个测量值个测量值的序列(见下表)。求测量值的平均值及其标准偏差。的序列(见下表)。求测量值的平均值及其标准偏差。解:平均值解:平均值 用公式用公式 计算各测量值残差列于上表中计算各测量值残差列于上表中实验偏差实验偏差 标准偏差标准偏差)(1.

14、530)531530532530529533531527529531528(11111Cxnxonii xxii )(767.111)(12Cnxsonii )(53.011767.1)()(Cnxsxso 3.测量结果的置信问题测量结果的置信问题(1 1)置信概率与置信区间:)置信概率与置信区间:置信区间置信区间 内包含真值的概率称为置内包含真值的概率称为置信概率。信概率。置信限:置信限:kk置信系数(或置信因子)置信系数(或置信因子)k kxEx )(置信概率是图中置信概率是图中阴影部分面积阴影部分面积(2 2)正态分布的置信概率)正态分布的置信概率 当分布和k值确定之后,则置信概率可定

15、正态分布,当k=3时 kkdpkPkxExP)()(997.0)2exp(21)()3(223333 ddpP区间越宽,区间越宽,置信概率越大置信概率越大置信因子k置信概率Pc10.68320.95530.997(3 3)t t分布的置信限分布的置信限 t分布与测量次数有关。当n20以后,t分布趋于正态分布。正态分布是t分布的极限分布。当n很小时,t分布的中心值比较小,分散度较大,即对于相同的概率,t分布比正态分布有更大的置信区间。给定置信概率和测量次数n,查表得置信因子kt。自由度:v=n-1.2.1随机误差的统计特性及减少方法(续)3a 3akka 3 k-a aa aP P(x x)x

16、x0 0(4 4)非正态分布的置信因子)非正态分布的置信因子 由于常见的非正态分布都是有限的,设其置信限为误差极限 ,即误差的置信区间为 置信概率为100。(P=1)反正弦均匀三角分布236k k a.2.1随机误差的统计特性及减少方法(续)2.2 2.2 系统误差的判断及消除方法系统误差的判断及消除方法 1.1.系统误差的特征:系统误差的特征:c a 0 t 图3 7 多 种 系 统 误 差 的 特 征 其 中:a-不 变 系 差 b-线 性 变 化 系 差 c-周 期 性 系 差 d-复 杂 规 律 变 化 系 差 d b 在同一条件下,多次测量同一量值时,误差的绝对值和符在同一条件下,多

17、次测量同一量值时,误差的绝对值和符号保持不变,或者在条件改变时,误差按一定的规律变化。号保持不变,或者在条件改变时,误差按一定的规律变化。多次测量求平均不能减少系差。2.系统误差的发现方法系统误差的发现方法 (1)不变的系统误差:校准、修正和实验比对。(2)变化的系统误差 残差观察法,适用于系统误差比随机误差大的情况 将所测数据及其残差按先后次序列表或作图,观察各数据的残差值的大小和符号的变化。ii0ii0马利科夫判据:马利科夫判据:若有累进性系统误差,若有累进性系统误差,D D 值应明显异于零。值应明显异于零。当当n n为偶数时,为偶数时,当当n n为奇数时,为奇数时,阿贝赫梅特判据:检验周

18、期性系差的存在。阿贝赫梅特判据:检验周期性系差的存在。21111snniii 2/112/ninniiiD 2/)1(12/)1(ninniiiD 3.系统误差的削弱或消除方法系统误差的削弱或消除方法 (1)从产生系统误差根源上采取措施减小系统误差 要从测量原理和测量方法尽力做到正确、严格。测量仪器定期检定和校准,正确使用仪器。注意周围环境对测量的影响,特别是温度对电子测量的影响较大。尽量减少或消除测量人员主观原因造成的系统误差。应提高测量人员业务技术水平和工作责任心,改进设备。(2)用修正方法减少系统误差修正值误差=(测量值真值)实际值测量值修正值(3 3)采用一些专门的测量方法)采用一些专

19、门的测量方法 替代法 交换法 对称测量法 减小周期性系统误差的半周期法 系统误差可忽略不计的准则是:系统误差或残余系统误差代数和的绝系统误差或残余系统误差代数和的绝对值不超过测量结果扩展不确定度的最后对值不超过测量结果扩展不确定度的最后一位有效数字的一半。一位有效数字的一半。.2.3 粗大误差及其判断准则 大误差出现的概率很小,列出可疑数据,分析是否是粗大误差,若是,则应将对应的测量值剔除剔除。1.粗大误差产生原因以及防止与消除的方法 粗大误差的产生原因 测量人员的主观原因测量人员的主观原因:操作失误或错误记录;客观外界条件的原因客观外界条件的原因:测量条件意外改变、受较大的电磁干扰,或测量仪

20、器偶然失效等。防止和消除粗大误差的方法 重要的是采取各种措施,防止产生粗大误差防止产生粗大误差。2.粗大误差的判别准则粗大误差的判别准则统计学的方法的基本思想是:给定一置信概率,确定相应统计学的方法的基本思想是:给定一置信概率,确定相应的置信区间,凡超过置信区间的误差就认为是粗大误差,的置信区间,凡超过置信区间的误差就认为是粗大误差,并予以剔除。并予以剔除。莱特检验法莱特检验法 格拉布斯检验法格拉布斯检验法 si3 sG max 3456789101195%1.151.461.671.821.942.032.112.182.2399%1.161.491.751.942.12.222.322.4

21、12.4812131415161718192095%2.292.332.372.412.442.472.52.532.5699%2.552.612.662.72.742.782.822.852.88cpncpn 应注意的问题应注意的问题:所有的检验法都是人为主观拟定的,至今无统一的规定无统一的规定。当偏离正态分布和测量次数少时检验不一定可靠。若有多个可疑数据同时超过检验所定置信区间,应逐个剔除逐个剔除,重新计算,再行判别。若有两个相同数据超出范围时,应逐个剔除。在一组测量数据中,可疑数据应很少可疑数据应很少。反之,说明系统工作不正常。.2.3 粗大误差及其判断准则(续)解:解:计算得计算得 ,

22、s=0.53,s=0.53计算计算残差填入表,残差填入表,可疑数据可疑数据是是 .用莱特检验法用莱特检验法 3 s=33 s=30.53=1.590.53=1.59=1.38所有的残差所有的残差.各测量值的残差各测量值的残差V V填入新表中,残差均小于填入新表中,残差均小于3 s3 s故故8 8个数据都为正常数据。个数据都为正常数据。1.530 x9.2;1.3;1.2641641;xxx4.530 x【例例】对某电炉的温度进行多次重复测量,所得结果列于表中,对某电炉的温度进行多次重复测量,所得结果列于表中,试检查测量数据中有无粗大误差。试检查测量数据中有无粗大误差。641;xxx9.2;1.

23、3;1.2641.2.4.2.4 测量结果的处理步骤测量结果的处理步骤 对测量值进行系统误差修正,将数据依次列成表格;求出算术平均值 列出残差 ,并验证 按贝塞尔公式计算标准偏差的估计值 按莱特准则,或格拉布斯准则 检查和剔除粗大误差;判断有无系统误差。如有系统误差,应查明原因,修正或消除系统误差后重新测量;计算算术平均值的标准偏差;写出最后结果的表达式,即 (单位)。niixnx11xxii 01 nii niins1211 nssx xskxA .2.4 测量结果的处理步骤(续)【例】对某电压进行了16次等精度测量,测量数据中已记入修正值,列于表中。要求给出包括误差在内的测量结果表达式。1

24、205.300.090.099205.710.410.410.50.52204.94-0.4-0.4-0.27-0.2710204.7-0.6-0.6-0.51-0.513205.630.330.330.420.4211204.86-0.44-0.44-0.35-0.354205.24-0.1-0.10.030.0312205.350.050.050.140.145206.651.351.3513205.21-0.09-0.09 06204.97-0.3-0.3-0.24-0.2414205.19-0.11-0.11-0.02-0.027205.360.060.060.150.1515205.

25、21-0.09-0.09 08205.16-0.1-0.1-0.05-0.0516205.320.020.020.110.11残残 差差残残 差差测量值测量值序号序号残残 差差 残残 差差序号序号测量值测量值.2.4 测量结果的处理步骤(续).2.4 测量结果的处理步骤(续)-0.8-0.6-0.4-0.200.20.40.6图 3 9 残 差 图51 01 5ni.2.4 测量结果的处理步骤(续)等精度测量与不等精度测量 等精度测量等精度测量:即在相同地点、相同的测量方法和相同测量设备、相同测量人员、相同环境条件(温度、湿度、干扰等),并在短时间内进行的重复测量。不等精度测量:在测量条件不相

26、同不等精度测量:在测量条件不相同时进行的测量,测量结果的精密度将不相同。不等精度测量处理方法:权值与标准偏差的平方成反比。权值 测量结果为加权平均值 iiW2 miimiiimiimiiiWxWxx1112121 .2.5.2.5 误差的合成分析误差的合成分析 问题:用间接法测量电阻消耗的功率时,需测量电阻R、端电压V和电流I三个量中的两个量,如何根据电阻、电压或电流的误差来推算功率的误差呢?常取:.2.5 误差的合成分析(续).2.5 误差的合成分析(续)在实际应用中,由于分项误差符号不定而可同时取正负,有时就采用保守的办法来估算误差,即将式中各分项取绝对值后再相加 该公式常用于在设计阶段中

27、对传感器、仪器及系统等的误差进行分析和估算,以采取减少误差的相应措施。但是,更严格和更准确地计算合成误差的方法是测量不确定度理论中的合成不确定度评定。1niiifyxx.3.3 测量数据处理测量数据处理.3.1.3.1 有效数字的处理有效数字的处理 1.1.数字修约规则数字修约规则 由于测量数据和测量结果均是近似数,其位数各不相同。为了使测量结果的表示准确唯一,计算简便,在数据处理时,需对测量数据和所用常数进行修约处理。数据修约规则:(1)小于小于5 5舍去舍去末位不变。末位不变。(2 2)大于大于5 5进进11在末位增在末位增1 1。(3 3)等于等于5 5时,取偶数时,取偶数当末位是偶数,

28、末位不变;末位是奇数,在末位增1(将末位凑为偶数)。例:将下列数据舍入到小数第二位。12.43444412.43 63.7350150163.740.694994990.69 25.325025025.3217.69555517.70 123.1150150123.12 需要注意的是,舍入应一次到位,不能逐位舍入。上例中0.69499,正确结果为0.69,错误做法是:0.694990.69500.6950.70。在“等于5”的舍入处理上,采用取偶数规则,是为了在比较多的数据舍入处理中,使产生正负误差的概率近似相等。2.2.有效数字有效数字 若截取得到的近似数其截取或舍入误差的绝对值不截取或舍入

29、误差的绝对值不超过近似数末位的半个单位超过近似数末位的半个单位,则该近似数从左边第一个非零数字到最末一位数为止的全部数字,称之为有效数字。例如:3.142四位有效数字,极限误差0.00058.700四位有效数字,极限误差0.0005 8.7103二位有效数字,极限误差0.05103 0.0807三位有效数字,极限误差0.00005 中间的0和末尾的0都是有效数字,不能随意添加。开头的零不是有效数字。测量数据的绝对值比较大(或比较小),而有效数字又比较少的测量数据,应采用科学计数法科学计数法,即a a1010n n,a的位数由有效数字的位数所决定。测量结果(或读数)的有效位数应由该测量的不确定度

30、来确定,即测量结果的最末一位测量结果的最末一位应与不确定度的位数对齐。应与不确定度的位数对齐。例如,某物理量的测量结果的值为63.44,且该量的 测 量 不 确 定 度 u 0.4,测 量 结 果 表 示 为63.463.40.40.4。3.近似运算法则近似运算法则保留的位数原则上取决于各数中准确度最差的那一项。(1)加法运算加法运算以小数点后位数最少的为准(各项无小数点则以有效位数最少者为准),其余各数可多取一位。例如:(2)减法运算减法运算:当两数相差甚远时,原则同加法运算;当两数很接近时,有可能造成很大的相对误差,因此,第一要尽量避免导致相近两数相减的测量方法,第二在运算中多一些有效数字

31、。(3 3)乘除法运算)乘除法运算以有效数字位数最少的数为准,其余参与运算的数字及结果中的有效数字位数与之相等。例如:也可以比有效数字位数最少者多保留一位有效数字。例如上面例子中的517.43和4.08各保留至517和4.08,结果为35.5。(4 4)乘方、开方运算:)乘方、开方运算:运算结果比原数多保留一位有效数字。例如:(27.8)2772.8(115)21.3221045.3508.48804.14408.428.043.517 365.3551.351.428.052008.428.043.517 .3.2.3.2测量数据的表示方法测量数据的表示方法1.1.列表法列表法根据测试的目的

32、和内容,设计出合理的表格。列表法简单、方便,数据易于参考比较,它对数据变化的趋势不如图解法明了和直观,但列表法是图示法和经验公式法的基础。例:x0 02 24 46 68 810101212y1.51.512.112.119.119.131.331.342.142.148.648.659.159.12.2.图示法图示法图示法的最大优点是形象、直观,从图形中可以很图示法的最大优点是形象、直观,从图形中可以很直观地看出函数的变化规律,如递增或递减、最直观地看出函数的变化规律,如递增或递减、最大值和最小值及是否有周期性变化规律等。大值和最小值及是否有周期性变化规律等。0 02 20 04 40 06

33、 60 08 80 00 05 51 10 01 15 5x xy y 3.3.经验公式法经验公式法经验公式法就是通过对实验数据的计算,采用数理统计的方法,确定它们之间的数量关系,即用数学表用数学表达式表示各变量之间关系达式表示各变量之间关系。有时又把这种经验公式称为数学模型。类型有些一元非线性回归可采用变量代换,将其转化为线性回归方程来解。一元线性回归 一元非线性回归 多元线性回归多元非线性回归变量个数 1111方次1111y=a+bx.3.3.3.3 建立经验公式的步骤建立经验公式的步骤 已知测量数据列测量数据列(x xi,i,y yi i i i=1,2,n),=1,2,n),建立公式的

34、步骤如下:(1)将输入自变量xi,作为横坐标,输出量yi即测量值作为纵坐标,描绘在坐标纸上,并把数据点描绘成测量曲线。把数据点描绘成测量曲线。(2)分析描绘的曲线,确定公式确定公式y=f(x)y=f(x)的基本形式。的基本形式。直线,可用一元线性回归方法确定直线方程。某种类型曲线,则先将该曲线方程变换为直线方程,然后按一元线性回归方法处理。如果测量曲线很难判断属于何种类型,这可以按曲线多项式回归处理。即:(3)由测量数据确定拟合方程(公式)中的常量。确定拟合方程(公式)中的常量。0mjjjykx (4)检验所确定的方程的准确性检验所确定的方程的准确性。用测量数据中的自变量代入拟合方程计算出函数

35、值y 计算拟合残差 计算拟合曲线的标准偏差 式中:m为拟合曲线未知数个数,n为测量数据列长度。如果标准偏差很大,说明所确定的公式基本形式如果标准偏差很大,说明所确定的公式基本形式有错误,应建立另外形式公式重做。有错误,应建立另外形式公式重做。iiiyy mni 2 .3.4.3.4 一元线性回归一元线性回归 用一个直线方程y=y=a+bxa+bx来表达测量数据(x xi,i,y yi i i=1,2,n)之间的相互关系,即求出a和b,此过程就是一元线性回归。1.1.端点法端点法 此方法是将测量数据中两个端点,起点和终点(即最大量程点)的测量值(x1,y1)和(xn,yn),代入y=y=a+bx

36、a+bx,则a,b分别为11bxya 11nnyybxx 0 02 20 04 40 06 60 08 80 00 05 51 10 01 15 5x xy y 2.2.平均选点法平均选点法 此方法是将全部此方法是将全部n n个测量值个测量值 (x xi,i,y yi i i=1,2,n)i=1,2,n)分成数目大致相同的两组,前半部分成数目大致相同的两组,前半部k k个测量点为个测量点为一组,其余的一组,其余的n-kn-k个测量点为另一组,两组测量个测量点为另一组,两组测量点都有自己的点都有自己的“点系中心点系中心”,其坐标分别为,其坐标分别为 通过两个通过两个“点系中心点系中心”的直线即是

37、拟合直线的直线即是拟合直线y=y=a+bxa+bx,其中其中a a,b b分别为:分别为:kxxkii 11kyykii 11knxxnkii 12knyynkii 121212xxyyb 2211xbyxbya 3.3.最小二乘法最小二乘法 最小二乘法的基本原理是在残差平方和为最小残差平方和为最小的条件下求出最佳直线。测量数据中的任何一个数据yi与拟合直线上y=a+bx对应的理想值yi之残差 (i=1,2,n 为测量点数)即 求a和b的偏导数,并令它们为零,即可解得a和b的值。iiiyy min)(1122 niniiiibxayv niniiinininiiiniiiixnxxyyxxa1

38、12211121)(niniiininiiiniiixnxyxnyxb1122111)(【例】对量程为10Mpa的压力传感器,用活塞式压力计进行测试,输出由数字电压表读数,所得各测量点的输出值列于下表中。试用端点法、平均选点法和最小二乘法拟合线最小二乘法拟合线性方程性方程,并计算各种拟合方程的拟合精度。拟合精度。压力压力(MPa)246810输出输出(mV)10.04320.09330.13540.12850.072mni 2 压力压力MPa输出输出mV端点法端点法平均选点法平均选点法最小二乘法最小二乘法理想直理想直线线残差残差理想直理想直线线残差残差理想直理想直线线残差残差210.04310

39、.0440.00110.950.05210.0800.0337420.09320.0520.04120.0970.00420.0900.003630.13530.0600.09330.0990.05430.1000.053840.12840.0680.06040.1010.02740.1100.0181050.07250.0680.00450.1030.03150.1200.048拟合直线方程拟合直线方程拟合误差拟合误差0.0680.0490.048xy004.5036.0 xy001.5093.0 xy005.5070.0 最小二乘法精确度最高,平均选点次之,端点法较差最小二乘法精确度最高,

40、平均选点次之,端点法较差 章 总 结 1 1 随机误差随机误差 随机误差是由大量微小的没有确定规律的因素引起的,无法避免和控制,不能消除随机误差。但应采用数理统计的方法,减少随机误差。算术平均值 残差 实验标准偏差 (贝塞尔公式)算术平均值标准偏差的估计值 根据概率分布和置信概率确定置信因子,得到测量结果的置信区间。正态分布或n20时,k=23;n20时,查t分布表得k;均匀分布时k。测量结果为:niiniixxnnxs1212)(1111)(nxsxs)()(xxii niixnx113)(xksx 2 2系统误差系统误差系统误差的特点是固定不变的或按确定规系统误差的特点是固定不变的或按确定

41、规律变化,主要由测量仪器、测量方法、测律变化,主要由测量仪器、测量方法、测量环境和测量人员等因素引起。多次测量量环境和测量人员等因素引起。多次测量不能减少系统误差。不能减少系统误差。系统误差的发现方法有:校准的方法、残系统误差的发现方法有:校准的方法、残差观察法、马利科夫判据和阿贝赫梅特差观察法、马利科夫判据和阿贝赫梅特判据。判据。系统误差的削弱或消除方法:(系统误差的削弱或消除方法:(1 1)从产生)从产生系统误差根源上采取措施;(系统误差根源上采取措施;(2 2)修正方)修正方法;(法;(3 3)采用专门的测量方法,如替)采用专门的测量方法,如替代法、交换法、对称测量法、半周代法、交换法、

42、对称测量法、半周期法。期法。3 3 粗大误差粗大误差粗大误差是由于测量人员的偶然出错和外界条件的改变、干扰和偶然失效等造成,应采取各种措施,防止产生粗大误差。对测量中的可疑数据可采用莱特检验法或拉布斯检验法判断是否是粗大误差,若是,应剔除不用。4 4 测量结果的处理测量结果的处理应区别对待等精度测量和不等精度测量,不等精度测量的测量结果用加权平均值表示,标准偏差越小,权值越大。对测量数据进行处理时,应首先检查和修正系统误差,判别并剔除粗大误差。5 5有效数字处理和测量数据的表示方法有效数字处理和测量数据的表示方法(1)数据修约规则:“四舍五入,等于五取偶数”;(2)有效数字与数据的准确度密切相关,测量结果(或读数)的有效位数应由该测量的不确定度来确定;(3)把测量数据处理成一定的函数关系,通常采用方法有列表法、图示法和经验公式。6 6建立公式的步骤和一元线性回归建立公式的步骤和一元线性回归(1)建立公式的步骤是:列表画曲线 分析曲线,确定曲线的基本形式,由测量数据确定拟合方程中的系数 求拟合残差和拟合曲线的标准偏差,并进行验证。(2)一元线性回归(直线拟合)是用一个直线方程 来表示测量数据之间的相互关系,即求出方程中的两个系数a和b。回归方法通常有端点法、平均选点法和最小二乘法。bxay

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第二板误差理论课件1.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|