第三章微分中值定理与导数的应用-课件.ppt

上传人(卖家):晟晟文业 文档编号:5207635 上传时间:2023-02-17 格式:PPT 页数:96 大小:1.03MB
下载 相关 举报
第三章微分中值定理与导数的应用-课件.ppt_第1页
第1页 / 共96页
第三章微分中值定理与导数的应用-课件.ppt_第2页
第2页 / 共96页
第三章微分中值定理与导数的应用-课件.ppt_第3页
第3页 / 共96页
第三章微分中值定理与导数的应用-课件.ppt_第4页
第4页 / 共96页
第三章微分中值定理与导数的应用-课件.ppt_第5页
第5页 / 共96页
点击查看更多>>
资源描述

1、第三章微分中值定理与导数的应用 第一节 中值定理 第二节 洛必达法则 第三节 泰勒(Taylor)公式 第四节 函数的单调性与曲线的凹凸性 第五节 函数的极值与最大值最小值 第六节 函数图形的描绘一、罗尔一、罗尔(Rolle)定理定理第一节机动 目录 上页 下页 返回 结束 二、拉格朗日中值定理二、拉格朗日中值定理 三、柯西三、柯西(Cauchy)中值定理中值定理 中值定理 第三三章 费马费马(fermat)引理引理一、罗尔一、罗尔(Rolle)定理定理,)(0有定义在x且)(0 xf 存在,)()(0 xfxf)(或0)(0 xf证证:设,)()(,)(0000 xfxxfxxx则)(0 x

2、f xxfxxfx)()(lim000)0(x)(0 xf)0(x)(0 xf000)(0 xfxyo0 x)(xfy 费马 目录 上页 下页 返回 结束 证毕罗尔(罗尔(Rolle)定理定理)(xfy 满足:(1)在区间 a,b 上连续(2)在区间(a,b)内可导(3)f(a)=f(b),使.0)(fxyoab)(xfy 证证:,上连续在因,)(baxf故在 a,b 上取得最大值 M 和最小值 m.若 M=m,则,)(baxMxf因此.0)(,),(fba在(a,b)内至少存在一点机动 目录 上页 下页 返回 结束 若 M m,则 M 和 m 中至少有一个与端点值不等,不妨设,)(afM 则

3、至少存在一点,),(ba使,)(Mf.0)(f注意注意:1)定理条件条件不全具备,结论不一定成立.例如,1,010,)(xxxxfx1yo则由费马引理得 1,1)(xxxf 1,0)(xxxfx1yo1x1yo机动 目录 上页 下页 返回 结束 使2)定理条件只是充分的.本定理可推广为)(xfy 在(a,b)内可导,且)(limxfax)(limxfbx在(a,b)内至少存在一点,.0)(f证明提示证明提示:设证 F(x)在 a,b 上满足罗尔定理.)(xFaxaf,)(bxaxf,)(bxbf,)(机动 目录 上页 下页 返回 结束 例例1.证明方程0155 xx,15)(5xxxf.3)1

4、(,1)0(ff,0)(0 xf,)1,0(011xxx)1(5)(4xxf),1,0(,0 x有且仅有一个小于1 的正实根.证证:1)存在性.则)(xf在 0,1 连续,且由介值定理知存在,)1,0(0 x使即方程有小于 1 的正根.0 x2)唯一性.假设另有,0)(1xf使在以)(xf10,xx为端点的区间满足罗尔定理条件,之间在10,xx至少存在一点,.0)(f使但矛盾,故假设不真!设机动 目录 上页 下页 返回 结束 二、拉格朗日中值定理二、拉格朗日中值定理 )(1)在区间 a,b 上连续)(xfy 满足:(2)在区间(a,b)内可导至少存在一点,),(ba使.)()()(abafbf

5、fxyoab)(xfy 思路思路:利用逆向思维逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然,)(x在 a,b 上连续,在(a,b)内可导,且证证:问题转化为证)(x)(xfxabafbf)()()(a由罗尔定理知至少存在一点,),(ba,0)(使即定理结论成立.,)(babbfaafb)()(拉氏 目录 上页 下页 返回 结束 0)()()(abafbff证毕拉格朗日中值定理的有限增量形式:推论推论:若函数在区间 I 上满足,0)(xf则)(xf在 I 上必为常数.)(xf证证:在 I 上任取两点,)(,2121xxxx上用拉在,21xx日中值公式,得0)()(12xfxf)(12xx

6、f)(21xx)()(12xfxf由 的任意性知,21,xx)(xf在 I 上为常数.)10()(0 xxxfy,00 xxbxa令则机动 目录 上页 下页 返回 结束 例例2.证明等式.1,1,2arccosarcsinxxx证证:设,arccosarcsin)(xxxf上则在)1,1()(xf由推论可知Cxxxfarccosarcsin)(常数)令 x=0,得.2C又,2)1(f故所证等式在定义域 上成立.1,1自证自证:),(x,2cotarcarctanxx211x211x0经验经验:欲证Ix时,)(0Cxf只需证在 I 上,0)(xf,0Ix 且.)(00Cxf使机动 目录 上页 下

7、页 返回 结束 例例3.证明不等式证证:设,)1ln()(ttf上满足拉格朗日在则,0)(xtf中值定理条件,即因为故.)0()1ln(1xxxxx)0()(fxf)1ln(xxx0,11x xx1x)0()1ln(1xxxxxxxf0,)0)(因此应有机动 目录 上页 下页 返回 结束 三、柯西三、柯西(Cauchy)中值定理中值定理0)()()()()()(fFaFbFafbf)(分析分析:)(xf及(1)在闭区间 a,b 上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)内至少存在一点,),(ba使.)()()()()()(FfaFbFafbf满足:)(xF0)(xF)()(a

8、FbF)(abFba0要证)()()()()()()(xfxFaFbFafbfx柯西 目录 上页 下页 返回 结束 证证:作辅助函数)()()()()()()(xfxFaFbFafbfx)()()()()()()()(baFbFbFafaFbfa,),(,)(内可导在上连续在则babax且,),(ba使,0)(即由罗尔定理知,至少存在一点.)()()()()()(FfaFbFafbf思考思考:柯西定理的下述证法对吗?),(,)()()(baabfafbf),(,)()()(baabFaFbF两个 不一定相同错错!机动 目录 上页 下页 返回 结束 上面两式相比即得结论.柯西定理的几何意义柯西定

9、理的几何意义:)()()()()()(FfaFbFafbf)(F)(aF)()(tfytFx)(af)(bF)(bf)()(ddtFtfxy注意:xyo弦的斜率切线斜率机动 目录 上页 下页 返回 结束 三、其他未定式三、其他未定式 二、二、型未定式型未定式一、一、型未定式型未定式00第二节机动 目录 上页 下页 返回 结束 洛必达法则 第三三章 一、一、0)(lim)(lim)1xFxfaxax)()(lim)3xFxfax存在(或为 )()(lim)()(limxFxfxFxfaxax,)()()()2内可导在与axFxf0)(xF且定理定理 1.型未定式型未定式00(洛必达法则)机动 目

10、录 上页 下页 返回 结束(在 x,a 之间)证证:无妨假设,0)()(aFaf在指出的邻域内任取,ax 则)(,)(xFxf在以 x,a 为端点的区间上满足柯0)(lim)(lim)1xFxfaxax故)()()()()()(aFxFafxfxFxf)()(Ff)()(limxFxfax)()(limFfax)()(limxFxfax)3定理条件定理条件:西定理条件,机动 目录 上页 下页 返回 结束)()(lim)3xFxfax存在(或为 ),)()()()2内可导在与axFxf0)(xF且推论推论1.定理 1 中ax 换为,ax,ax,xx之一,推论推论 2.若)()(limxFxf满足

11、定且型仍属)(,)(,00 xFxf理1条件,则)()(lim)()(limxFxfxFxf)()(limxFxf 条件 2)作相应的修改,定理 1 仍然成立.,x)()(lim)()(limxFxfxFxfaxax洛必达法则定理1 目录 上页 下页 返回 结束 例例1.求.123lim2331xxxxxx解解:原式 lim1x型00266lim1xxx23注意注意:不是未定式不能用洛必达法则!266lim1xxx166lim1x332x1232 xx机动 目录 上页 下页 返回 结束 例例2.求.arctanlim12xxx解解:原式 limx型00221limxxx1211x21x11li

12、m21xx思考思考:如何求 nnn12arctanlim(n 为正整数)?型机动 目录 上页 下页 返回 结束 二、二、型未定式型未定式)(lim)(lim)1xFxfaxax)()(lim)3xFxfax存在(或为)()(limxFxfax定理定理 2.证证:)()(limxFxfax仅就极限存在的情形加以证明.)()(limxFxfax(洛必达法则)机动 目录 上页 下页 返回 结束,)()()()2内可导在与axFxf0)(xF且1)0)()(limxFxfax的情形)()(limxFxfax limax)(1xF)(1xf limax)()(12xFxF)()(12xfxf)()()(

13、)(lim2xfxFxFxfax)()(lim)()(lim2xfxFxFxfaxax)()(lim)()(lim1xfxFxFxfaxax)()(lim)()(limxFxfxFxfaxax从而型00机动 目录 上页 下页 返回 结束 2)0)()(limxFxfax的情形.取常数,0k,0 kkxFxfax)()(lim)()()(limxFxFkxfax)()()(limxFxFkxfax)()()(limxFxFkxfaxkxFxfax)()(lim)()(lim)()(limxFxfxFxfaxax可用 1)中结论机动 目录 上页 下页 返回 结束 3)()(limxFxfax时,结

14、论仍然成立.(证明略)说明说明:定理中ax 换为之一,条件 2)作相应的修改,定理仍然成立.,ax,ax,xx,x定理2 目录 上页 下页 返回 结束 例例3.求.)0(lnlimnxxnx解解:型原式11limnxxxnnxxn1lim0例例4.求求解解:(1)n 为正整数的情形.原式0 xnxexn1limxnxexnn22)1(limxnxen!lim.)0,0(limnexxnx型机动 目录 上页 下页 返回 结束 例例4.求.)0,0(limnexxnx(2)n 不为正整数的情形.nx从而xnexxkexxkex1由(1)0limlim1xkxxkxexex0limxnxex用夹逼准

15、则kx1kx存在正整数 k,使当 x 1 时,机动 目录 上页 下页 返回 结束.)0(0lnlimnxxnx例3.例4.)0,0(0limnexxnx说明说明:1)例3,例4 表明x时,lnx后者比前者趋于更快.例如,xxx21lim21limxxxxxx21lim而xxx21lim11lim2xx1)0(xe,)0(nxn用洛必达法则2)在满足定理条件的某些情况下洛必达法则不能解决 计算问题.机动 目录 上页 下页 返回 结束 3)若,)()()(lim时不存在xFxf.)()(lim)()(limxFxfxFxf例如例如,xxxxsinlim1cos1limxx极限不存在)sin1(li

16、mxxx1机动 目录 上页 下页 返回 结束 三、其他未定式三、其他未定式:,0,00,1型0解决方法解决方法:通分转化转化000取倒数转化转化0010取对数转化转化例例5.求).0(lnlim0nxxnx型0解解:原式nxxxlnlim0110limnxxxn0)(lim0nxnx机动 目录 上页 下页 返回 结束 型.)tan(seclim2xxx解解:原式)cossincos1(lim2xxxxxxxcossin1lim2xxxsincoslim20例例6.求机动 目录 上页 下页 返回 结束 通分转化转化000取倒数转化转化0010取对数转化转化例例7.求.lim0 xxx型00解解:

17、xxx0limxxxeln0lim0e1利用利用 例例5例5 目录 上页 下页 返回 结束 通分转化转化000取倒数转化转化0010取对数转化转化例例8.求.sintanlim20 xxxxx解解:注意到xsin原式30tanlimxxxx22031seclimxxx2203tanlimxxxxx22tan1sec31x型00机动 目录 上页 下页 返回 结束 二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式 第三节一、泰勒公式的建立一、泰勒公式的建立机动 目录 上页 下页 返回 结束 三、泰勒公式的应用三、泰勒公式的应用 应用用多项式近似表示函数理论分析近似计算泰勒(Taylor

18、)公式 第三三章 特点:)(01xp)(0 xf)(0 xf 一、泰勒公式的建立一、泰勒公式的建立)(xfxy)(xfy o)()(000 xxxfxf)(1xp以直代曲以直代曲0 x)(1xp)(01xp在微分应用中已知近似公式:需要解决的问题如何提高精度?如何估计误差?xx 的一次多项式机动 目录 上页 下页 返回 结束 公式 称为 的 n 阶泰勒公式阶泰勒公式.)(xf公式 称为n 阶泰勒公式的拉格朗日余项拉格朗日余项.泰勒中值定理泰勒中值定理:内具有的某开区间在包含若),()(0baxxf1n直到阶的导数,),(bax时,有)(xf)(0 xf)(00 xxxf200)(!2)(xxx

19、f nnxxnxf)(!)(00)()(xRn其中10)1()(!)1()()(nnnxxnfxR则当)0(之间与在xx泰勒 目录 上页 下页 返回 结束 公式 称为n 阶泰勒公式的佩亚诺佩亚诺(Peano)余项余项.在不需要余项的精确表达式时,泰勒公式可写为)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(0nxxo)()(0nnxxoxR注意到*可以证明:阶的导数有直到在点nxxf0)(式成立机动 目录 上页 下页 返回 结束 特例特例:(1)当 n=0 时,泰勒公式变为)(xf)(0 xf)(0 xxf(2)当 n=1 时,泰勒公式变为

20、给出拉格朗日中值定理)(xf)(0 xf)(00 xxxf20)(!2)(xxf 可见)(xf)(0 xf)(00 xxxf201)(!2)()(xxfxR 误差)(xf)(0 xf)(00 xxxf10)1()(!)1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)(fd)0(之间与在xx)0(之间与在xx)0(之间与在xx)0(之间与在xx机动 目录 上页 下页 返回 结束 称为麦克劳林(麦克劳林(Maclaurin)公式公式.,)10(,00 xx则有)(xf)0(fxf)0(1)1(!)1()(nnxnxf2!2)0(xf nnxnf!)0()(在泰勒公式中

21、若取)(xf)(0 xf)(00 xxxf10)1()(!)1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)()0(之间与在xx)(xf)0(fxf)0(,)()1(Mxfn则有误差估计式1!)1()(nnxnMxR2!2)0(xf nnxnf!)0()(若在公式成立的区间上麦克劳林 目录 上页 下页 返回 结束 由此得近似公式二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式xexf)()1(,)()(xkexf),2,1(1)0()(kfkxe1x!33x!nxn)(xRn!22x其中)(xRn!)1(n)10(1nxxe机动 目录 上页 下页 返回

22、 结束)sin(xxxfsin)()2()()(xfkxsinx!33x!55x!)12(12mxm)(2xRm其中)(2xRm)sin(212mx2k2sin)0()(kfkmk2,012 mk,)1(1m),2,1(m1)1(m)10(12mx!)12(m)cos()1(xm机动 目录 上页 下页 返回 结束!)2(2mxmxxfcos)()3(类似可得xcos1!22x!44x)(12xRm其中)(12xRm!)22(m)cos()1(1xm)10(m)1(22mx机动 目录 上页 下页 返回 结束)1()1()()4(xxxf)()(xfk)1(x1x2xnx)(xRn其中)(xRn1

23、1)1(!)1()()1(nnxxnn)10(kxk)1)(1()1()1()1()0()(kfk),2,1(k!2 )1(!n)1()1(n机动 目录 上页 下页 返回 结束)1()1ln()()5(xxxf已知)1ln(xx22x33xnxn)(xRn其中)(xRn11)1(1)1(nnnxxn)10(1)1(n类似可得)()(xfkkkxk)1(!)1()1(1),2,1(k机动 目录 上页 下页 返回 结束 三、泰勒公式的应用三、泰勒公式的应用1.在近似计算中的应用在近似计算中的应用 误差1!)1()(nnxnMxRM 为)()1(xfn在包含 0,x 的某区间上的上界.需解问题的类型

24、:1)已知 x 和误差限,要求确定项数 n;2)已知项数 n 和 x,计算近似值并估计误差;3)已知项数 n 和误差限,确定公式中 x 的适用范围.)(xf)0(fxf)0(2!2)0(xf nnxnf!)0()(机动 目录 上页 下页 返回 结束 已知例例1.计算无理数 e 的近似值,使误差不超过.106解解:xe!)1(nxe1nx令 x=1,得e)10(!)1(!1!2111nen)10(由于,30ee欲使)1(nR!)1(3n610由计算可知当 n=9 时上式成立,因此 e!91!2111718281.2xe1x!33x!nxn!22x的麦克劳林公式为机动 目录 上页 下页 返回 结束

25、 说明说明:注意舍入误差对计算结果的影响.本例若每项四舍五入到小数点后 6 位,则 各项舍入误差之和不超过,105.076总误差为6105.076106105这时得到的近似值不能保证不能保证误差不超过.106因此计算时中间结果应比精度要求多取一位.e!91!2111机动 目录 上页 下页 返回 结束 例例2.用近似公式!21cos2xx计算 cos x 的近似值,使其精确到 0.005,试确定 x 的适用范围.解解:近似公式的误差)cos(!4)(43xxxR244x令005.0244x解得588.0 x即当588.0 x时,由给定的近似公式计算的结果能准确到 0.005.机动 目录 上页 下

26、页 返回 结束 2.利用泰勒公式求极限利用泰勒公式求极限例例3.求.43443lim20 xxxx解解:由于x431243 x21)1(243x 2)(14321x!21)1(2121243)(x)(2xo用洛必塔法则不方便!2x用泰勒公式将分子展到项,11)1(!)1()()1(nnxxnnnx!n)1()1(n)1(x1x2x!2 )1()10(机动 目录 上页 下页 返回 结束 x3421)1(243x220 limxx 原式)(2216921xox 329x43)(2216941xox 2x43)(2216941xox 11)1(!)1()()1(nnxxnnnx!n)1()1(n)1

27、(x1x2x!2 )1()10(3.利用泰勒公式证明不等式利用泰勒公式证明不等式例例4.证明).0(82112xxxx证证:21)1(1xx21x2)121(21!21x325)1)(221)(121(21!31xx)10(3225)1(161821xxxx)0(82112xxxx机动 目录 上页 下页 返回 结束 4224642024612!)12()1(9!917!715!513!311sinnnxxxxxxxn)(2nxo!33xxy!5!353xxxy!7!5!3753xxxxyxysinxy xsin泰勒多项式逼近泰勒多项式逼近机动 目录 上页 下页 返回 结束 12!)12()1(

28、9!917!715!513!311sinnnxxxxxxxn)(2nxoxsin42246420246xysin!9!7!5!39753xxxxxy!11!9!7!5!3119753xxxxxxy泰勒多项式逼近泰勒多项式逼近机动 目录 上页 下页 返回 结束 第四节一、函数单调性的判定法一、函数单调性的判定法 机动 目录 上页 下页 返回 结束 二、曲线的凹凸与拐点二、曲线的凹凸与拐点函数的单调性与 曲线的凹凸性 第三三章 一、一、函数单调性的判定法函数单调性的判定法若定理定理 1.设函数)(xf0)(xf则 在 I 内单调递增)(xf,)0)(xf(递减).证证:无妨设,0)(Ixxf任取)

29、(,2121xxIxx由拉格朗日中值定理得)()()(1212xxfxfxf),(21xxI0故.)()(21xfxf这说明 在 I 内单调递增.)(xf在开区间 I 内可导,机动 目录 上页 下页 返回 结束 证毕例例1.确定函数31292)(23xxxxf的单调区间.解解:12186)(2xxxf)2)(1(6xx令,0)(xf得2,1xxx)(xf)(xf)1,(2001)2,1(),2(21故)(xf的单调增单调增区间为,)1,();,2()(xf的单调减单调减区间为).2,1(12xoy12机动 目录 上页 下页 返回 结束 yxo说明说明:1)单调区间的分界点除驻点外,也可是导数不

30、存在的点.例如,),(,32xxy332xy 0 xy32xy 2)如果函数在某驻点两边导数同号,则不改变函数的单调性.例如,),(,3xxy23xy 00 xyyox3xy 机动 目录 上页 下页 返回 结束 例例2.证明20 x时,成立不等式.2sinxx证证:令,2sin)(xxxf,2,0()(上连续在则xf,上可导在)2,0(2sincos)(xxxxxf)tan(cos2xxxx1xtanx0,)2,0()(内单调递减在因此xf从而2,0(,2sinxxx0)2()(fxf,2)(处左连续在又xf因此且证证证明 目录 上页 下页 返回 结束*证明0tanxx令,tan)(xxx则x

31、x2sec1)(x2tan),0(,02x,),0()(2上递减在x从而0)0()(x即),0(,0tan2xxxAB定义定义.设函数)(xf在区间 I 上连续,21Ixx(1)若恒有,2)()()2(2121xfxfxxf则称的)(xf图形是凹凹的;(2)若恒有,2)()()2(2121xfxfxxf则称的)(xf连续曲线上有切线的凹凸分界点称为拐点拐点.图形是凸凸的.yox2x1x221xx yox1x221xx 2xyox二、曲线的凹凸与拐点二、曲线的凹凸与拐点机动 目录 上页 下页 返回 结束 定理定理2.(凹凸判定法)(xf(1)在 I 内,0)(xf则 在 I 内图形是凹的;)(x

32、f(2)在 I 内,0)(xf则 在 I 内图形是凸的.)(xf证证:,21Ixx利用一阶泰勒公式可得)()(1fxf221xx!2)(1f 21)(x221xx)()(2fxf221xx)(f 221xx)(2x221xx!2)(2f 22)(x221xx 两式相加两式相加)(2)()(21fxfxf221xx 22!21)(12xx)()(21ff ,0)(时当 xf),(2)()(21fxfxf221xx 说明(1)成立;(2)(f 221xx)(1x221xx 机动 目录 上页 下页 返回 结束 设函数在区间I 上有二阶导数证毕例例3.判断曲线4xy 的凹凸性.解解:,43xy 212

33、xy 时,当0 x;0 y,0时x,0 y故曲线4xy 在),(上是向上凹的.说明说明:1)若在某点二阶导数为 0,2)根据拐点的定义及上述定理,可得拐点的判别法如下:若曲线)(xfy,0连续在点x0)(0 xf或不存在,但)(xf 在 两侧异号异号,0 x则点)(,(00 xfx是曲线)(xfy 的一个拐点.则曲线的凹凸性不变.在其两侧二阶导数不变号,xyo机动 目录 上页 下页 返回 结束 例例4.求曲线3xy 的拐点.解解:,3231xy3592 xyxy y0)0,(),0(不存在0因此点(0,0)为曲线3xy 的拐点.oxy凹凸机动 目录 上页 下页 返回 结束 xxy24362)(

34、3632xx例例5.求曲线14334xxy的凹凸区间及拐点.解解:1)求y,121223xxy2)求拐点可疑点坐标令0 y得,03221xx对应3)列表判别271121,1yy)0,(),0(32),(32y xy0320012711故该曲线在)0,(),(32及上向上凹,向上凸,点(0,1)及),(271132均为拐点.上在),0(32凹凹凸机动 目录 上页 下页 返回 结束 32)1,0(),(271132二、最大值与最小值问题最大值与最小值问题一、函数的极值及其求法函数的极值及其求法 第五节机动 目录 上页 下页 返回 结束 函数的极值与 最大值最小值 第三三章 一、函数的极值及其求法函

35、数的极值及其求法定义定义:,),()(内有定义在设函数baxf,),(0bax,的一个邻域若存在0 x在其中当0 xx 时,)()(0 xfxf(1)则称 为 的极大点极大点,0 x)(xf称 为函数的极大值极大值;)(0 xf,)()(0 xfxf(2)则称 为 的极小点极小点,0 x)(xf称 为函数的极小值极小值.)(0 xf极大点与极小点统称为极值点极值点.机动 目录 上页 下页 返回 结束 注意注意:3x1x4x2x5xxaboy41,xx为极大点52,xx为极小点3x不是极值点2)对常见函数,极值可能出现在导数为 0 或 不存在的点.1)函数的极值是函数的局部性质.31292)(2

36、3xxxxf例如例如(P146例例4)1x为极大点,2)1(f是极大值 1)2(f是极小值 2x为极小点,12xoy12机动 目录 上页 下页 返回 结束 定理定理 1(极值第一判别法极值第一判别法),)(0的某邻域内连续在设函数xxf且在空心邻域内有导数,0时由小到大通过当xx(1)(xf“左左正正右右负负”,;)(0取极小值在则xxf(2)(xf“左左负负右右正正”,.)(0取极大值在则xxf(自证)机动 目录 上页 下页 返回 结束 点击图中任意处动画播放暂停例例1.求函数求函数32)1()(xxxf的极值.解解:1)求导数32)(xxf3132)1(xx35235xx2)求极值可疑点令

37、,0)(xf得;521x令,)(xf得02x3)列表判别x)(xf)(xf0520033.0)0,(),0(52),(520 x是极大点,其极大值为0)0(f是极小点,其极小值为52x33.0)(52f机动 目录 上页 下页 返回 结束 定理定理2(极值第二判别法极值第二判别法)二阶导数,且处具有在点设函数0)(xxf,0)(0 xf0)(0 xf,0)()1(0 xf若则 在点 取极大值;)(xf0 x,0)()2(0 xf若则 在点 取极小值.)(xf0 x证证:(1)(0 xf 00)()(lim0 xxxfxfxx0)(lim0 xxxfxx,0)(0知由 xf存在,0,00时当xx0

38、)(0 xxxf时,故当00 xxx;0)(xf时,当00 xxx,0)(xf0 x0 x0 x由第一判别法知.)(0取极大值在xxf(2)类似可证.机动 目录 上页 下页 返回 结束 例例2.求函数1)1()(32 xxf的极值.解解:1)求导数,)1(6)(22xxxf)15)(1(6)(22 xxxf2)求驻点令,0)(xf得驻点1,0,1321xxx3)判别因,06)0(f故 为极小值;0)0(f又,0)1()1(ff故需用第一判别法判别.,1)(左右邻域内不变号在由于xxf.1)(没有极值在xxf1xy1机动 目录 上页 下页 返回 结束 定理定理3(判别法的推广判别法的推广)阶导点

39、有直到在若函数nxxf0)(,0)()()(0)1(00 xfxfxfn,0)(0)(xfn则:数,且1)当 为偶数时,n,0)(0)(时xfn0 x是极小点;,0)(0)(时xfn0 x是极大点.2)当 为奇数时,n0 x为极值点,且0 x不是极值点.)()()(000 xxxfxfxfnnxxnxf)(!)(00)()(0nxxo)()(0 xfxf)(0nxxonnxxnxf)(!)(00)(当 充分接近 时,上式左端正负号由右端第一项确定,0 xx故结论正确.机动 目录 上页 下页 返回 结束 证证:利用 在 点的泰勒公式,)(xf0 x可得例如例如,例2中1)1()(32 xxf,)

40、35(24)(2 xxxf0)1(f所以1x不是极值点.极值的判别法(定理1 定理3)都是充分的.说明说明:当这些充分条件不满足时,不等于极值不存在.例如例如:)(xf,)sin2(212xx,20 x0 x2)0(f为极大值,但不满足定理1 定理3 的条件.xy11机动 目录 上页 下页 返回 结束 二、最大值与最小值问题最大值与最小值问题,)(上连续在闭区间若函数baxf则其最值只能在极值点极值点或端点端点处达到.求函数最值的方法求函数最值的方法:(1)求 在 内的极值可疑点)(xf),(bamxxx,21(2)最大值 maxM,)(1xf,)(2xf,)(,mxf,)(af)(bf最小值

41、 minm,)(1xf,)(2xf,)(,mxf,)(af)(bf机动 目录 上页 下页 返回 结束 特别特别:当 在 内只有一个极值可疑点时,)(xf,ba 当 在 上单调单调时,)(xf,ba最值必在端点处达到.若在此点取极大 值,则也是最大 值.(小)对应用问题,有时可根据实际意义判别求出的可疑点是否为最大 值点或最小值点.(小)机动 目录 上页 下页 返回 结束)1292(2 xx1224)9(209681012922xx )(xxf041x250 x041x250 x例例3.求函数xxxxf1292)(23在闭区间,2541上的最大值和最小值.解解:显然,)(2541Cxf且)(xf

42、,)1292(23xxx,129223xxx)(xf121862xx121862xx内有极值可疑点在,)(2541xf2,1,0321xxx,3)(321941f,0)0(f,5)1(f,4)2(f5)(25f故函数在0 x取最小值 0;在1x及25取最大值 5.,)2)(1(6xx,)2)(1(6xx251241机动 目录 上页 下页 返回 结束 因此也可通过例例3.求函数说明说明:)()(2xfx)(x求最值点.)(xf与最值点相同,由于)(x令(自己练习)xxxxf1292)(23在闭区间,2541上的最大值和最小值.机动 目录 上页 下页 返回 结束(k 为某一常数)例例4.铁路上 A

43、B 段的距离为100 km,工厂C 距 A 处20AC AB,要在 AB 线上选定一点 D 向工厂修一条 已知铁路与公路每公里货运价之比为 3:5,为使货D 点应如何选取?20AB100C解解:设,(km)xAD x则,2022xCD)100(320522xkxky)1000(x,)34005(2xxky23)400(40052xky 令,0 y得,15x又,015 xy所以 为唯一的15x极小点,故 AD=15 km 时运费最省.总运费物从B 运到工厂C 的运费最省,从而为最小点,问DKm,公路,机动 目录 上页 下页 返回 结束 例例5.把一根直径为 d 的圆木锯成矩形梁,问矩形截面的高

44、h 和 b 应如何选择才能使梁的抗弯截面模量最大?解解:由力学分析知矩形梁的抗弯截面模量为hbd261hbw,)(2261bdb),0(db令)3(2261bdw0得db31从而有1:2:3:bhd22bdhd32即由实际意义可知,所求最值存在,驻点只一个,故所求结果就是最好的选择.机动 目录 上页 下页 返回 结束 第六节一、一、曲线的渐近线曲线的渐近线二、二、函数图形的描绘函数图形的描绘机动 目录 上页 下页 返回 结束 函数图形的描绘 第三三章 2xy 无渐近线.点 M 与某一直线 L 的距离趋于 0,一、曲线的渐近线曲线的渐近线定义定义.若曲线 C上的点M 沿着曲线无限地远离原点时,则

45、称直线 L 为曲线C 的渐近线渐近线.例如,双曲线12222byax有渐近线0byax但抛物线或为“纵坐标差纵坐标差”NLbxkyMxyoC)(xfy Pxyo机动 目录 上页 下页 返回 结束 1.水平与铅直渐近线水平与铅直渐近线若,)(limbxfx则曲线)(xfy 有水平渐近线.by)(x或若,)(lim0 xfxx则曲线)(xfy 有垂直渐近线.0 xx)(0 xx或例例1.求曲线211xy的渐近线.解解:2)211(limxx2 y为水平渐近线;,)211(lim1xx1 x为垂直渐近线.21机动 目录 上页 下页 返回 结束 2.斜渐近线斜渐近线有则曲线)(xfy 斜渐近线.bxk

46、y)(x或若,0)(limxfx)(bxk 0)(limxbkxxfxx0)(limxfx)(bxk 0)(limxbkxxfx)(limxbxxfkxxxfkx)(lim)(limxkxfbx机动 目录 上页 下页 返回 结束)(x或)(x或(P75 题题13)例例2.求曲线3223xxxy的渐近线.解解:,)1)(3(3xxxy,lim3yx)1(x或所以有铅直渐近线3x及1x又因xxfkx)(lim32lim22xxxx1)(limxxfbx3232lim22xxxxx22xy为曲线的斜渐近线.机动 目录 上页 下页 返回 结束 312 xy二、函数图形的描绘二、函数图形的描绘步骤步骤:

47、1.确定函数)(xfy 的定义域,期性;2.求,)(,)(xfxf 并求出)(xf 及)(xf 3.列表判别增减及凹凸区间,求出极值和拐点;4.求渐近线;5.确定某些特殊点,描绘函数图形.为 0 和不存在的点;并考察其对称性及周机动 目录 上页 下页 返回 结束 例例3.描绘22331xxy的图形.解解:1)定义域为,),(无对称性及周期性.2),22xxy,22 xy,0 y令2,0 x得,0 y令1x得3)xyy y012)0,()1,0()2,1(),2(00234(极大)(拐点)32(极小)4)xy133220机动 目录 上页 下页 返回 结束 1231第七节曲线的弯曲程度与切线的转角

48、有关与曲线的弧长有关机动 目录 上页 下页 返回 结束 主要内容主要内容:一、一、弧微分弧微分 二、二、曲率及其计算公式曲率及其计算公式 三、三、曲率圆与曲率半径曲率圆与曲率半径 MMM 平面曲线的曲率 第三三章 一、一、弧微分弧微分)(xfy 设在(a,b)内有连续导数,其图形为 AB,弧长)(xsAMsxsMMMMxMMMMMMxyx22)()(MMMM2)(1xyxsxsx0lim)(2)(1yxAB)(xfy abxoyxMxxMy1lim0MMMMx机动 目录 上页 下页 返回 结束 则弧长微分公式为tyxsdd22)(xs2)(1yxysd)(1d2或22)(d)(ddyxsxxd

49、xdxoyxMydT几何意义几何意义:sdTM;cosddsxsinddsy若曲线由参数方程表示:)()(tyytxx机动 目录 上页 下页 返回 结束 二、曲率及其计算公式二、曲率及其计算公式在光滑弧上自点 M 开始取弧段,其长为,s对应切线,定义弧段 上的平均曲率ssKMMs点 M 处的曲率sKs0limsdd注意注意:直线上任意点处的曲率为 0!机动 目录 上页 下页 返回 结束 转角为例例1.求半径为R 的圆上任意点处的曲率.解解:如图所示,RssKs0limR1可见:R 愈小,则K 愈大,圆弧弯曲得愈厉害;R 愈大,则K 愈小,圆弧弯曲得愈小.sRMM机动 目录 上页 下页 返回 结

50、束 有曲率近似计算公式,1时当 yytan)22(设y arctan得xyd)arctan(d xyyd12 xysd1d2故曲率计算公式为sKdd23)1(2yyK yK 又曲率曲率K 的计算公式的计算公式)(xfy 二阶可导,设曲线弧则由机动 目录 上页 下页 返回 结束 说明说明:(1)若曲线由参数方程)()(tyytxx给出,则23)1(2yyK(2)若曲线方程为,)(yx则23)1(2xxK 23)(22yxyxyxK 机动 目录 上页 下页 返回 结束 例例2.我国铁路常用立方抛物线361xlRy 作缓和曲线,且 l R.处的曲率.)6,(,)0,0(2RllBO其中R是圆弧弯道的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第三章微分中值定理与导数的应用-课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|