1、2019年浙江省衢州市中考数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1. 在12,0,1,-9四个数中,负数是()A. 12B. 0C. 1D. 92. 浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A. 0.1018105B. 1.018105C. 0.1018106D. 1.0181063. 如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A. B. C. D. 4. 下列计算正确的是()A. a6+a6=a12B. a6a2=a8C. a6a2=a3D. (a6)2=a85. 在一个箱子里放有1个白球和2个
2、红球,它们除颜色外其余都相同从箱子里任意摸出1个球,摸到白球的概率是()A. 1B. 23C. 13D. 126. 二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,3)C. (1,3)D. (1,3)7. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动若BDE=75,则CDE的度数是()A. 60B. 65C. 75D. 808. 一块圆形宣传标志牌如图所示,点A,B,C在O上,CD垂直平分AB于点
3、D现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A. 6dmB. 5dmC. 4dmD. 3dm9. 如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形则原来的纸带宽为()A. 1B. 2C. 3D. 210. 如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿EADC移动至终点C设P点经过的路径长为x,CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D. 二、填空题(本大题共6小题,共24.0分)11. 计算:1a+2a=_12. 数据2,7,5,7,9的众数是_13. 已知实数m,n满足m+n=3,mn=1,则代数式m2
4、-n2的值为_14. 如图,人字梯AB,AC的长都为2米,当=50时,人字梯顶端离地面的高度AD是_米(结果精确到0.1m参考数据:sin500.77,cos500.64,tan501.19)15. 如图,在平面直角坐标系中,O为坐标原点,ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F若y=kx(k0)图象经过点C,且SBEF=1,则k的值为_16. 如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶
5、点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则OBOA的值为_(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,摆放第n个“7”字图形得顶点Fn-1,则顶点F2019的坐标为_三、计算题(本大题共1小题,共10.0分)17. 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间经市场调查表明,该馆每间标准房的价格在170240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元)190200210220y(间)65605550(1)根据所给数据在坐标系中
6、描出相应的点,并画出图象(2)求y关于x的函数表达式,并写出自变量x的取值范围(3)设客房的日营业额为w(元)若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?四、解答题(本大题共7小题,共56.0分)18. 计算:|-3|+(-3)0-4+tan4519. 已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF求证:AE=AF20. 如图,在44的方格子中,ABC的三个顶点都在格点上(1)在图1中画出线段CD,使CDCB,其中D是格点(2)在图2中画出平行四边形ABEC,其中E是格点21. 某校为积极响应“南孔圣地,衢州有礼
7、”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程为了解学生参与综合实践类课程活动情况,随机抽取了部分学生进行调查,根据调查结果绘制了如图所示不完整的条形统计图和扇形统计图(1)请问被随机抽取的学生共有多少名?并补全条形统计图(2)在扇形统计图中,求选择“礼行“课程的学生人数所对应的扇形圆心角的度数(3)若该校共有学生1200人,估计其中参与“礼源”课程的学生共有多少人?22. 如图,在等腰ABC中,AB=AC,以AC为直径作O交BC于点D,过点D作DEAB,垂足为E(1)求
8、证:DE是O的切线(2)若DE=3,C=30,求AD的长23. 定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=a+c3,y=b+d3那么称点T是点A,B的融合点例如:A(-1,8),B(4,-2),当点T(x,y)满足x=1+43=1,y=8+(2)3=2时,则点T(1,2)是点A,B的融合点(1)已知点A(-1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点试确定y与x的关系式若直线ET交x轴于点H当DTH为直角三角形时,求点
9、E的坐标24. 如图,在RtABC中,C=90,AC=6,BAC=60,AD平分BAC交BC于点D,过点D作DEAC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G(1)求CD的长(2)若点M是线段AD的中点,求EFDF的值(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得CPG=60?答案和解析1.【答案】D【解析】解:,0,1,-9四个数中负数是-9;故选:D根据负数的特点,负数前有负号,即可求解;本题考查实数的分类;能够根据负数的特点进行判断是解题的关键2.【答案】B【解析】解:101800用科学记数法表示为:1.018105, 故选:B科
10、学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3.【答案】A【解析】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:故选:A找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中本题考查了三视图的知识,主视图是从物体的正面看得到的视图4.【答案】B【解析】解:A、a6+a6=
11、2a6,故此选项错误; B、a6a2=a8,故此选项正确; C、a6a2=a4,故此选项错误; D、(a6)2=a12,故此选项错误; 故选:B直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键5.【答案】C【解析】解:一个不透明的箱子里有1个白球,2个红球,共有3个球,从箱子中随机摸出一个球是白球的概率是:故选:C由一个不透明的箱子里共有1个白球,2个红球,共3个球,它们除颜色外均相同,直接利用概率公式求解即可求得答案此题考查了概率公式的应用用到的知识点为:概率=所求情
12、况数与总情况数之比6.【答案】A【解析】解:y=(x-1)2+3, 顶点坐标为(1,3), 故选:A由抛物线顶点式可求得答案本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)7.【答案】D【解析】解:OC=CD=DE, O=ODC,DCE=DEC, DCE=O+ODC=2ODC, O+OED=3ODC=BDE=75, ODC=25, CDE+ODC=180-BDE=105, CDE=105-ODC=80 故选:D根据OC=CD=DE,可得O=ODC,DCE=DEC,根据三角形的外角性质可知DCE=O+ODC=2ODC
13、据三角形的外角性质即可求出ODC数,进而求出CDE的度数本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键8.【答案】B【解析】解:连接OA,OD,点A,B,C在O上,CD垂直平分AB于点DAB=8dm,DC=2dm,AD=4dm,设圆形标志牌的半径为r,可得:r2=42+(r-2)2,解得:r=5,故选:B连接OA,OD,利用垂径定理解答即可此题考查勾股定理,关键是利用垂径定理解答9.【答案】C【解析】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=2=故选:C根据正六边的性质,正六边形由6个
14、边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可本题考查了正多边形和圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆熟练掌握正六边形的性质10.【答案】C【解析】解:通过已知条件可知,当点P与点E重合时,CPE的面积为0; 当点P在EA上运动时,CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大, 当x=2时有最大面积为4, 当P在AD边上运动时,CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大, 当x=6时,有最大面积为8,当点P带DC边上运动时,
15、CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0; 故选:C根据题意分类讨论,随着点P位置的变化,CPE的面积的变化趋势本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势11.【答案】3a【解析】解:原式=故答案为:利用同分母分式的加法法则计算,即可得到结果此题考查了分式的加减法,熟练掌握同分母分式的加法法则是解本题的关键12.【答案】7【解析】解:数据2,7,5,7,9的众数是7, 故答案为:7根据众数的概念求解可得本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是
16、这多个数据13.【答案】3【解析】解:因为实数m,n满足,则代数式m2-n2=(m-n)(m+n)=3,故答案为:3根据平方差公式解答即可此题考查平方差公式,关键是根据平方差公式解答14.【答案】1.5【解析】解:sin=,AD=ACsin20.77=1.5,故答案为:1.5根据锐角三角函数的定义即可求出答案本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型15.【答案】24【解析】解:连接OC,BD,将AOD沿y轴翻折,使点A落在x轴上的点E处,OA=OE,点B恰好为OE的中点,OE=2OB,OA=2OB,设OB=BE=x,则OA=2x,AB=3x,四边形ABCD
17、是平行四边形,CD=AB=3x,CDAB,CDFBEF,=,SBEF=1,SBDF=3,SCDF=9,SBCD=12,SCDO=SBDC=12,k的值=2SCDO=24连接OC,BD,根据折叠的性质得到OA=OE,得到OE=2OB,求得OA=2OB,设OB=BE=x,则OA=2x,根据平行四边形的性质得到CD=AB=3x,根据相似三角形的性质得到=,求得SBDF=3,SCDF=9,于是得到结论本题考查了反比例函数系数k的几何意义,折叠的性质,平行四边形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键16.【答案】12 (606255,4055)【解析】解:(1)ABO+DBC=90
18、,ABO+OAB=90,DBC=OAB,AOB=BCD=90,AOBBCD,=,DC=1,BC=2,=,故答案为;(2解:过C作CMy轴于M,过M1作M1Nx轴,过F作FN1x轴根据勾股定理易证得BD=,CM=OA=,DM=OB=AN=,C(,),AF=3,M1F=BC=2,AM1=AF-M1F=3-2=1,BOAANM1(AAS),NM1=OA=,NM1FN1,FN1=,AN1=,ON1=OA+AN1=+=F(,),同理,F1(,),即()F2(,),即(,)F3(,),即(,)F4(,),即(,)F2019(,),即(,405),故答案为即(,405)(1)先证明AOBBCD,所以=,因为
19、DC=1,BC=2,所有=;(2)利用三角形相似与三角形全等依次求出F1,F2,F3,F4的坐标,观察求出F2019的坐标此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键17.【答案】解:(1)如图所示:(2)设y=kx+b,将(200,60)、(220,50)代入,得:220k+b=50200k+b=60,解得k=12b=160,y=-12x+160(170x240);(3)w=xy=x(-12x+160)=-12x2+160x,对称轴为直线x=-b2a=160,a=-120,在170x240范围内,w随x的增大而减小,当x=1
20、70时,w由最大值,最大值为12750元【解析】(1)描点、连线即可得; (2)待定系数法求解可得; (3)由营业额=入住房间数量房价得出函数解析式,再利用二次函数的性质求解可得此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值问题,由营业额=入住房间数量房价得出函数解析式及二次函数的性质是解题关键18.【答案】解:|-3|+(-3)0-4+tan45=3+1-2+1=3;【解析】分别求出每一项,|-3|=3,(-3)0=1,=2,tan45=1,然后进行运算即可;本题考查实数的运算;熟练掌握零指数幂,绝对值运算,二次根式运算,牢记特殊三角函数值等时解题的关键19.【答
21、案】证明:四边形ABCD是菱形,AB=AD,B=D,BE=DF,ABEADF(SAS),AE=CF【解析】根据菱形的性质和全等三角形的判定和性质解答即可此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答20.【答案】解:(1)线段CD即为所求(2)平行四边形ABEC即为所求【解析】(1)利用数形结合的思想解决问题即可 (2)根据平行四边形的判定即可解决问题本题考查作图-应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型21.【答案】解:(1)被随机抽取的学生共有1230%=40(人),则礼艺的人数为4015%=6(人),补全图形如
22、下:(2)选择“礼行“课程的学生人数所对应的扇形圆心角的度数为360440=36;(3)估计其中参与“礼源”课程的学生共有1200840=240(人)【解析】(1)由礼思的人数及其所占百分比求得总人数,总人数乘以礼艺对应百分比求得其人数,从而补全图形; (2)用360乘以选择“礼行“课程的学生人数占被调查人数的比例即可得; (3)利用样本估计总体思想求解可得本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22.【答案】(1)证明:连接OD;OD=OC,C=OD
23、C,AB=AC,B=C,B=ODC,ODAB,ODE=DEB;DEAB,DEB=90,ODE=90,即DEOD,DE是O的切线(2)解:连接AD,AC是直径,ADC=90,AB=AC,B=C=30,BD=CD,OAD=60,OA=OD,AOD是等边三角形,AOD=60,DE=3,B=30,BED=90,CD=BD=2DE=23,OD=AD=tan30CD=3323=2,AD的长为:602180=23【解析】(1)连接OD,只要证明ODDE即可; (2)连接AD,根据AC是直径,得到ADC=90,利用AB=AC得到BD=CD,解直角三角形求得BD,在RtABD中,解直角三角形求得AD,根据题意证
24、得AOD是等边三角形,即可OD=AD,然后利用弧长公式求得即可本题考查了切线的判定要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可23.【答案】解:(1)x=13(-1+7)=2,y=13(5+7)=4,故点C是点A、B的融合点;(2)由题意得:x=13(t+3),y=13(2t+3),则t=3x-3,则y=13(6x-6+3)=2x-1;点T(3+t3,2t+33),则ET2=(t-3+t3)2,DE2=(t-3)2+(2t+3)2,DT2=(3-t+33)2+(2t+33)2,当ET=DT时,(3-t+33)2+(2t+33)2=(t-3+t3)2,解得:t
25、=-125;当ET=ED时,无解;当DE=DT时,无解;故点E的坐标为(-125,-95)【解析】(1)x=(-1+7)=2,y=(5+7)=4,即可求解;(2)由题意得:x=(t+3),y=(2t+3),即可求解;分ET=DT、ET=ED、DE=DT三种情况,分别求解即可本题是一次函数综合运用题,涉及到勾股定理得运用,此类新定义题目,通常按照题设顺序,逐次求解24.【答案】解:(1)AD平分BAC,BAC=60,DAC=12BAC=30,在RtADC中,DC=ACtan30=633=23(2)由题意易知:BC=63,BD=43,DEAC,FDM=GAM,AM=DM,DMF=AMG,DFMAG
26、M(ASA),DF=AG,DEAC,EFAG=BEAB=BDBC,EFDF=EFAG=BDBC=4363=23(3)CPG=60,过C,P,G作外接圆,圆心为Q,CQG是顶角为120的等腰三角形当Q与DE相切时,如图3-1中,作QHAC于H,交DE于P连接QC,QG设Q的半径为r则QH=12r,r+12r=23,r=433,CG=4333=4,AG=2,由DFMAGM,可得DMAM=DFAG=43,DM=47AD=1637当Q经过点E时,如图3-2中,延长CO交AB于K,设CQ=rQC=QG,CQG=120,KCA=30,CAB=60,AKC=90,在RtEQK中,QK=33-r,EQ=r,E
27、K=1,12+(33-r)2=r2,解得r=1439,CG=14393=143,由DFMAGM,可得DM=1435当Q经过点D时,如图3-3中,此时点M,点G与点A重合,可得DM=AD=43观察图象可知:当DM=1637或1435DM43时,满足条件的点P只有一个【解析】(1)解RtADC即可解决问题(2)由DEAC,可得=,证明DF=AG,即可解决问题(3)求出三种特殊位置:当Q与DE相切时,如图3-1中当Q经过点E时,如图3-2中当Q经过点D时,如图3-3中,分别求出DM的值即可判断本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题