1、二次函数专题复习 考点1:二次函数的图象和性质一、考点讲解:1二次函数的定义:形如(a0,a,b,c为常数)的函数为二次函数2二次函数的图象及性质: 二次函数y=ax2 (a0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大y=a(xh)2k的对称轴是x=h,顶点坐标是(h,k)。 二次函数的图象是一条抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,
2、y随x的增大而增大 注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。解题小诀窍:二次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。 当a0时,当x=时,函数有最小值;当a0时,当 x=时,函数有最大值。3图象的平移:将二次函数y=ax2 (a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的
3、图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向下(k0)平移|k|个单位,即可得到y=a(xh)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 注意:二次函数y=ax2 与y=ax2 的图像关于x轴对称。平移的简记口诀是“上加下减,左加右减”考点二:二次函数图象上点的坐标特点1 (2012常州)已知二次函数y=a(x-2)2+c(a0),当自变量x分别取、3、0时,对应的函数值分别:y1,y2,y3,则y1
4、,y2,y3的大小关系正确的是()Ay3y2y1 By1y2y3 Cy2y1y3 Dy3y1y2 2、(2012衢州)已知二次函数y=x2-7x+,若自变量x分别取x1,x2,x3,且0x1x2x3,则对应的函数值y1,y2,y3的大小关系正确的是()Ay1y2y3 By1y2y3 Cy2y3y1 Dy2y3y1 3、(2012咸宁)对于二次函数y=x2-2mx-3,有下列说法:它的图象与x轴有两个公共点;如果当x1时y随x的增大而减小,则m=1;如果将它的图象向左平移3个单位后过原点,则m=-1; 如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3其中正确的
5、说法是 4、.抛物线y=4(x+2)2+5的对称轴是_ 2、函数y= x24的图象与y 轴的交点坐标是( )5、如果将抛物线向右平移2个单位,向下平移3个单位,平移后二次函数的关系式是( 6、已知直线y=x与二次函数y=ax2 2x1的图象的一个交点 M的横标为1,则a的值为( ) 7、抛物线y=x2x5的顶点坐标是( )直线y=x+2与抛物线y=x2 +2x的交点坐标为_8、二次函数的图象上有两点(3,8)和(5,8),则此拋物线的对称轴是9、已知点P (a,m)和 Q(0,m)是抛物线y=2x2+4x3上的两个不同点,则a+b=_10已知二次函数(a0)与一次函数y=kx+m(k0)的图象
6、相交于点A(2,4),B(8,2),如图127所示,能使y1y2成立的x取值范围是_11、若直线 y=ax6与抛物线y=x24x+3只有一个交点,则a的值为( )12、已知M、N两点关于 y轴对称,且点 M在双曲线 y= 上,点 N在直线上,设点M的坐标为(a,b),则抛物线y=abx2+(ab)x的顶点坐标为_.考点三:抛物线的特征与a、b、c的关系一、考点讲解:1、a的符号:a的符号由抛物线的开口方向决定抛物线开口向上,则a0;抛物线开口向下,则a02、b的符号由对称轴决定,若对称轴是y轴,则b=0;若抛物线的顶点在y轴左侧,顶点的横坐标0,即0,则a、b为同号;若抛物线的顶点在y轴右侧,
7、顶点的横坐标0,即0则a、b异号即“左同右异”3c的符号:c的符号由抛物线与y轴的交点位置确定若抛物线交y轴于正半,则c0,抛物线交y轴于负半轴则c0;若抛物线过原点,则c=04的符号:的符号由抛物线与x轴的交点个数决定若抛物线与x轴只有一个交点,则=0;有两个交点,则0没有交点,则0 5、a+b+c与ab+c的符号:a+b+c是抛物线(a0)上的点(1,a+b+c)的纵坐标,ab+c是抛物线(a0)上的点(1,abc)的纵坐标根据点的位置,可确定它们的符号.1、(2012玉林)二次函数y=ax2+bx+c(a0)的图象如图所示,其对称轴为x=1,有如下结论:c1;2a+b=0;b24ac;若
8、方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是() A B C D2(2012重庆)已知二次函数y=ax2+bx+c(a0)的图象如图所示对称轴为x=下列结论中,正确的是() Aabc0 Ba+b=0 C2b+c0 D4a+c2b 3已知二次函数的图象与x轴交于点(2,0),(x1,0)且1x12,与y轴正半轴的交点连点(0,2)的下方,下列结论:ab0;2a+c0;4a+c0)的两实根分别为,且,则,满足 A. 12 B. 12 C. 12 D.217、(2010安徽蚌埠)已知抛物线经过点A(4,0)。设点C(1,-3),请在抛物线的对称轴上确定一点D,使得的值
9、最大,则D点的坐标为。18、抛物线y= (x1)2+2关于x轴对称的抛物线的解析式是_ 关于y轴对称的抛物线的解析式是_关于原点中心对称的抛物线的解析式是_ 关于顶点中心对称的抛物线(或绕顶点旋转180)的解析式是_解答题1、(2009年重庆市江津区)如图,抛物线与x轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使PBC的面积最大?,若存在,求出点P的坐标及PBC的面积最大值.若
10、没有,请说明理由.2、如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标; (2)求经过点AO、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由3、(2009威海)如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0)。(0,3),过A,B,C三点的抛物线的对称轴为直线,D为对称轴上一动点(1) 求抛物线的解析式;(2) 求当AD+CD最小时点的坐标;(3) 以点为圆心,以为半径作A证明:当AD+CD最小时,直线BD与A相切写出直线BD与
11、A相切时,D点的另一个坐标:_4、(2010山东聊城)如图,已知抛物线yax2+bx+c(a0)的对称轴为x1,且抛物线经过A(1,0)、C(0,3)两点,与x轴交于另一点B(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使PCB90的点P的坐标5、(2011广东肇庆,(25,10分)已知抛物线(0)与轴交于、两点 (1)求证:抛物线的对称轴在轴的左侧;(2)若(是坐标原点),求抛物线的解析式;6、(2009年济南)已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、 (1)求这条抛物线的函数表达式(2)已知在对称轴上存在一点P,使得的周长最小请求出点P的坐标(3)若点是线段上的一个动点(不与点O、点C重合)过点D作交轴于点连接、设的长为,的面积为求与之间的函数关系式试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由7已知抛物线yax2bxc经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴 (1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由