2021年山东省青岛市中考数学试卷.docx

上传人(卖家):2023DOC 文档编号:5553967 上传时间:2023-04-24 格式:DOCX 页数:35 大小:552.39KB
下载 相关 举报
2021年山东省青岛市中考数学试卷.docx_第1页
第1页 / 共35页
2021年山东省青岛市中考数学试卷.docx_第2页
第2页 / 共35页
2021年山东省青岛市中考数学试卷.docx_第3页
第3页 / 共35页
2021年山东省青岛市中考数学试卷.docx_第4页
第4页 / 共35页
2021年山东省青岛市中考数学试卷.docx_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、2021年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1(3分)(2021青岛)4的绝对值是()A4B4CD2(3分)(2021青岛)下列四个图形中,中心对称图形是()ABCD3(3分)(2021青岛)2021年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用22纳米0.000000022米,将0.000000022用科学记数法表示为()A2.2108B2.2108C0.22107D221094(3分)(2021青岛)如图所示的几何体,其俯视图是()ABCD5(3分)(2

2、021青岛)如图,将ABC先向上平移1个单位,再绕点P按逆时针方向旋转90,得到ABC,则点A的对应点A的坐标是()A(0,4)B(2,2)C(3,2)D(1,4)6(3分)(2021青岛)如图,BD是O的直径,点A,C在O上,AC交BD于点G若COD126,则AGB的度数为()A99B108C110D1177(3分)(2021青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O若AE5,BF3,则AO的长为()ABC2D48(3分)(2021青岛)已知在同一直角坐标系中,二次函数yax2+bx和反比例函数y的图象如图所示,则一次函数yxb的图象可能是()ABCD二

3、、填空题(本大题共6小题,每小题3分,共18分)9(3分)(2021青岛)计算:() /_D10(3分)(2021青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 将被录用(填甲或乙) 应聘者项目甲乙学历98经验76工作态度5711(3分)(2021青岛)如图,点A是反比例函数y(x0)图象上的一点,AB垂直于x轴,垂足为B,OAB的面积为6若点P(a,7)也在此函数的图象上,则a 12(3分)(2021青岛)抛物线y2x2

4、+2(k1)xk(k为常数)与x轴交点的个数是 13(3分)(2021青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G若DE2,OF3,则点A到DF的距离为 14(3分)(2021青岛)如图,在ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N已知BAC120,AB+AC16,的长为,则图中阴影部分的面积为 三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15(4分)(2021青岛)已知:ABC求作:O,使它经过点B和点C,并且圆心O在A的平分线上四、解答题(本大

5、题共9小题,共74分)16(8分)(2021青岛)(1)计算:()();(2)解不等式组:17(6分)(2021青岛)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色若配成紫色,则小颖去观看,否则小亮去观看这个游戏对双方公平吗?请说明理由18(6分)(2021青岛)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22方向一艘渔船从D出发,沿

6、正北方向航行至C处,此时在A处测得C位于南偏东67方向求此时观测塔A与渔船C之间的距离(结果精确到0.1海里)(参考数据:sin22,cos22,tan22,sin67,cos67,tan67)19(6分)(2021青岛)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“7080”这组的百分比m ;(3)已知“8090”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89抽取的n名学生测试成绩的中

7、位数是 分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数20(8分)(2021青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水已知单独打开甲进水口注满游泳池所用时间是

8、单独打开乙进水口注满游泳池所用时间的倍求单独打开甲进水口注满游泳池需多少小时?21(8分)(2021青岛)如图,在ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DEBF,连接AE,CF(1)求证:ADECBF;(2)连接AF,CE当BD平分ABC时,四边形AFCE是什么特殊四边形?请说明理由22(10分)(2021青岛)某公司生产A型活动板房成本是每个425元图表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD4m,宽AB3m,抛物线的最高点E到BC的距离为4m(1)按如图所示的直角坐标系,抛物线可以用ykx2+m(k0)表示求该抛物线的函数表达式

9、;(2)现将A型活动板房改造为B型活动板房如图,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2已知GM2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个公司每月最多能生产160个B型活动板房不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?23(10分)(2021青岛)实际问题:某商场为鼓励

10、消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、等若干张奖券,奖券的面值金额之和即为优惠金额某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,n(n为整数,且n3)这n个整数中任取a (1an)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表所取的

11、2个整数1,21,32,32个整数之和345如表,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表所取的2个整数1,21,31,42,32,43,42个整数之和345567如表,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有 种不同的结果(4)从1,2,3,n(n为整数,且n3)这n个整数中任取2个整数,这2个整

12、数之和共有 种不同的结果探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有 种不同的结果(2)从1,2,3,n(n为整数,且n4)这n个整数中任取3个整数,这3个整数之和共有 种不同的结果探究三:从1,2,3,n(n为整数,且n5)这n个整数中任取4个整数,这4个整数之和共有 种不同的结果归纳结论:从1,2,3,n(n为整数,且n3)这n个整数中任取a(1an)个整数,这a个整数之和共有 种不同的结果问题解决:从100张面值分别为1元、2元、3元、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有 种不同的优惠金额拓展延伸:(1)从1,2,3,36这36个整数中

13、任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,n+3(n为整数,且n2)这(n+1)个整数中任取a(1an+1)个整数,这a个整数之和共有 种不同的结果24(12分)(2021青岛)已知:如图,在四边形ABCD和RtEBF中,ABCD,CDAB,点C在EB上,ABCEBF90,ABBE8cm,BCBF6cm,延长DC交EF于点M点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s过点P作GHAB于点H,交CD于点G设运动时间为t(s)(0t5)解答下列问题:(1)当t为何值时,点M在

14、线段CQ的垂直平分线上?(2)连接PQ,作QNAF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在AFE的平分线上?若存在,求出t的值;若不存在,请说明理由2021年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1(3分)(2021青岛)4的绝对值是()A4B4CD【解答】解:|4|4,4的绝对值是4故选:A2(3分)(2021青岛)下列四个图形中,中心对称图形是()ABCD【解答】解:A、不是中心对称图形,不符合题意;

15、B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意故选:D3(3分)(2021青岛)2021年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用22纳米0.000000022米,将0.000000022用科学记数法表示为()A2.2108B2.2108C0.22107D22109【解答】解:将0.000000022用科学记数法表示为2.2108故选:B4(3分)(2021青岛)如图所示的几何体,其俯视图是()ABCD【解答】解:从上面看是一个矩形,矩形的中间

16、处有两条纵向的实线,实线的两旁有两条纵向的虚线故选:A5(3分)(2021青岛)如图,将ABC先向上平移1个单位,再绕点P按逆时针方向旋转90,得到ABC,则点A的对应点A的坐标是()A(0,4)B(2,2)C(3,2)D(1,4)【解答】解:如图,ABC即为所求,则点A的对应点A的坐标是(1,4)故选:D6(3分)(2021青岛)如图,BD是O的直径,点A,C在O上,AC交BD于点G若COD126,则AGB的度数为()A99B108C110D117【解答】解:BD是O的直径,BAD90,BD45,DACCOD _D_DdAGBDAC+D63+45108故选:B7(3分)(2021青岛)如图,

17、将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O若AE5,BF3,则AO的长为()ABC2D4【解答】解:矩形ABCD,ADBC,ADBC,ABCD,EFCAEF,AEAF3,由折叠得,FCAF,OAOC,BC3+58,在RtABF中,AB 在RtABC中,AC ,OAOC2,故选:C8(3分)(2021青岛)已知在同一直角坐标系中,二次函数yax2+bx和反比例函数y的图象如图所示,则一次函数yxb的图象可能是()ABCD【解答】解:二次函数开口向下,a0;二次函数的对称轴在y轴右侧,左同右异,b符号与a相异,b0;反比例函数图象经过一三象限,c0, /_一次函数yxb的

18、图象经过二三四象限故选:B二、填空题(本大题共6小题,每小题3分,共18分)9(3分)(2021青岛)计算:() 【解答】解:原式(2) 4,故答案为:410(3分)(2021青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么乙将被录用(填甲或乙) 应聘者项目甲乙学历98经验76工作态度57【解答】解:,乙将被录用,故答案为:乙11(3分)(2021青岛)如图,点A是反比例函数y(x0)图象上的一点,AB垂直于x轴,垂足为B,

19、OAB的面积为6若点P(a,7)也在此函数的图象上,则a【解答】解:AB垂直于x轴,垂足为B,OAB的面积|k|,即|k|6,而k0,k12,反比例函数为y,点P(a,7)也在此函数的图象上,7a12,解得a故答案为12(3分)(2021青岛)抛物线y2x2+2(k1)xk(k为常数)与x轴交点的个数是2【解答】解:抛物线y2x2+2(k1)xk(k为常数),当y0时,02x2+2(k1)xk,2(k1)242(k)4k2+40,02x2+2(k1)xk有两个不相等的实数根,抛物线y2x2+2(k1)xk(k为常数)与x轴有两个交点,故答案为:213(3分)(2021青岛)如图,在正方形ABC

20、D中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G若DE2,OF3,则点A到DF的距离为【解答】解:解法一:在正方形ABCD中,对角线AC与BD交于点O,AODO,ADC90,ADE90,点F是AE的中点,DFAFEFAE,OF垂直平分AD,AGDG,FGDE1,OF2,OG2,AOCO,CD2OG4,ADCD4,过A作AHDF于H,HADE90,AFDF,ADFDAE,ADHAED,AE ,AH,即点A到DF的距离为,解法二:在正方形ABCD中,对角线AC与BD交于点O,AODO,ADC90,ADE90,点F是AE的中点,DFAFEFAE,

21、OF垂直平分AD,AGDG,FGDE1,OF3,OG2,AOCO,CD2OG4,ADCD4,DG2,DF,过A作AHDF于H,HADE90,SADFDFAHADFG,AH,故答案为:14(3分)(2021青岛)如图,在ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N已知BAC120,AB+AC16,的长为,则图中阴影部分的面积为243 (【解答】解:如图,连接OM、ON,半圆分别与AB,AC相切于点M,NOMAB,ONAC,BAC120,MON60,MOB+NOC120,的长为, r3,OMONr3,连接OA,在RtAON中,AON30,ON3,AN,AMAN,BM

22、+CNAB+AC(AM+AN)162,S阴影SOBM+SOCN(S扇形MOE+S扇形NOF) ()/D_Dd)(162)3243 故答案为:243 三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15(4分)(2021青岛)已知:ABC求作:O,使它经过点B和点C,并且圆心O在A的平分线上【解答】解:如图所示:O即为所求四、解答题(本大题共9小题,共74分)16(8分)(2021青岛)(1)计算:()();(2)解不等式组:【解答】解:(1)原式()() ;(2)解不等式2x35,得:x1,解不等式x+2x,得:x3,则不等式组的解集为x317(6分)(2021青岛)

23、小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色若配成紫色,则小颖去观看,否则小亮去观看这个游戏对双方公平吗?请说明理由【解答】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,P(小颖),P(小亮),因此游戏是公平18(6分)(2021青岛)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于

24、南偏西22方向一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67方向求此时观测塔A与渔船C之间的距离(结果精确到0.1海里)(参考数据:sin22,cos22,tan22,sin67,cos67,tan67)【解答】解:如图,过点A作AEBD于点E,过点C作CFAE于点F,得矩形CDEF,CFDE,根据题意可知:AE5,BAE22,BEAEtan225 DEBDBE624,CF4,在RtAFC中,CAF67,AC ()/_D_答:观测塔A与渔船C之间的距离约为4.33海里19(6分)(2021青岛)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试

25、,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“7080”这组的百分比m20%;(3)已知“8090”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89抽取的n名学生测试成绩的中位数是84.5分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数【解答】解:(1)816%50(人),5048101216(人),补全频数直方图如图所示:(2)m105020%,故答案为:20%;(3)将50个数据从小到大排列后,

26、处在第25、26位的两个数的平均数为 ()因此中位数是84.5,故答案为:84.5;(4)1200 /_D_答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人20(8分)(2021青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒

27、后再重新注水已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍求单独打开甲进水口注满游泳池需多少小时?【解答】解:(1)设y与t的函数解析式为ykt+b,解得,即y与t的函数关系式是y140t+100,同时打开甲、乙两个进水口的注水速度是:(380100)2140(m3/h);(2)单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍甲进水口进水的速度是乙进水口进水速度的,同时打开甲、乙两个进水口的注水速度是140m3/h,甲进水口的进水速度为:140( ()480608(h),即单独打开甲进水口注满游泳池需8h21(8分)(2021青岛)如图

28、,在ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DEBF,连接AE,CF(1)求证:ADECBF;(2)连接AF,CE当BD平分ABC时,四边形AFCE是什么特殊四边形?请说明理由【解答】(1)证明:四边形ABCD是平行四边形,ADCB,ADCCBA,ADECBF,在ADE和CBF中,ADECBF(SAS);(2)当BD平分ABC时,四边形AFCE是菱形,理由:BD平分ABC,ABDCBD,四边形ABCD是平行四边形,OAOC,OBOD,ADBC,ADBCBD,ABDADB,ABAD,平行四边形ABCD是菱形,ACBD,ACEF,DEBF,OEOF,又OAOC

29、,四边形AFCE是平行四边形,ACEF,四边形AFCE是菱形22(10分)(2021青岛)某公司生产A型活动板房成本是每个425元图表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD4m,宽AB3m,抛物线的最高点E到BC的距离为4m(1)按如图所示的直角坐标系,抛物线可以用ykx2+m(k0)表示求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房如图,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2已知GM2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本每个A型活动板房的成本+一扇窗

30、户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个公司每月最多能生产160个B型活动板房不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?【解答】解:(1)长方形的长AD4m,宽AB3m,抛物线的最高点E到BC的距离为4mOHAB3,EOEHOH431,E(0,1),D(2,0),该抛物线的函数表达式ykx2+1,把点D(2,0)代入,得k,该抛物线的函数表达式为:yx2+1;(2)GM2,OMOG1,当x1时,y,N(1,),MN,S矩形MNFGM

31、NGM ,每个B型活动板房的成本是:425 ()/_答:每个B型活动板房的成本是500元;(3)根据题意,得w(n500)1002(n600)2+20000,每月最多能生产160个B型活动板房,100 (解得n620,20,n620时,w随n的增大而减小,当n620时,w有最大值为19200元答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元23(10分)(2021青岛)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、100元的奖券中(面值为整数),一次任意抽取

32、2张、3张、4张、等若干张奖券,奖券的面值金额之和即为优惠金额某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,n(n为整数,且n3)这n个整数中任取a (1an)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表所取的2个整数1,21,32,32个整数之和345如表,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种

33、不同的结果(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表所取的2个整数1,21,31,42,32,43,42个整数之和345567如表,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有7种不同的结果(4)从1,2,3,n(n为整数,且n3)这n个整数中任取2个整数,这2个整数之和共有2n3种不同的结果探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种不同的结果(2)从1,2,3,n(n为整数

34、,且n4)这n个整数中任取3个整数,这3个整数之和共有3n8种不同的结果探究三:从1,2,3,n(n为整数,且n5)这n个整数中任取4个整数,这4个整数之和共有4n15种不同的结果归纳结论:从1,2,3,n(n为整数,且n3)这n个整数中任取a(1an)个整数,这a个整数之和共有a(na)+1种不同的结果问题解决:从100张面值分别为1元、2元、3元、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有476种不同的优惠金额拓展延伸:(1)从1,2,3,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,n+3(n为整数,且

35、n2)这(n+1)个整数中任取a(1an+1)个整数,这a个整数之和共有a(na+1)+1种不同的结果【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+23,最大值为4+59,这2个整数之和共有93+17种不同情况;故答案为:7;(4)从1,2,3,n(n为整数,且n3)这n个整数中任取2个整数,这2个整数之和最小值为1+23,最大值为n+n12n1,这2个整数之和共有2n13+12n3种不同情况;故答案为:2n3;探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+36,最大值为2+3+49,这3个整数之和共

36、有96+14种不同情况;故答案为:4;(2)从1,2,3,n(n为整数,且n4)这n个整数中任取3个整数,这3个整数之和的最小值为1+2+36,最大值为n+(n1)+(n2)3n3,这3个整数之和共有3n36+13n8种不同结果,故答案为:3n8;探究三:从1,2,3,n(n为整数,且n5)这n个整数中任取4个整数,这4个整数之和的最小值为1+2+3+410,最大值为n+(n1)+(n2)+(n3)4n6,因此这4个整数之和共有4n610+14n15种不同结果,归纳总结:从1,2,3,n(n为整数,且n5)这n个整数中任取a个整数,这a个整数之和的最小值为1+2+a,最大值为n+(n1)+(n

37、2)+(n3)+(na+1)na,因此这a个整数之和共有na /a)+1种不同结果,故答案为:a(na)+1;问题解决:将n100,a5,代入a(na)+1得;5(1005)+1476,故答案为:476;拓展延伸:(1)设从1,2,3,36这36个整数中任取a个整数,使得取出的这些整数之和共有204种不同的结果,由上述结论得,a(36a)+1204,解得,a7或a29;答:从1,2,3,36这36个整数中任取7个整数或取29个整数,能使取出的这些整数之和共有204种不同的结果;(2)根据上述规律,从(n+1)个连续整数中任取a个整数,这a个整数之和共有a(n+1a)+1,故答案为:a(n+1a

38、)+124(12分)(2021青岛)已知:如图,在四边形ABCD和RtEBF中,ABCD,CDAB,点C在EB上,ABCEBF90,ABBE8cm,BCBF6cm,延长DC交EF于点M点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s过点P作GHAB于点H,交CD于点G设运动时间为t(s)(0t5)解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QNAF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中

39、,是否存在某一时刻t,使点P在AFE的平分线上?若存在,求出t的值;若不存在,请说明理由【解答】解:(1)ABCD,CM,点M在线段CQ的垂直平分线上,CMMQ,1t,t;(2)如图1,过点Q作QNAF于点N,ABCEBF90,ABBE8cm,BCBF6cm,AC ( /_CE2cm,CMcm,EM,sinPAHsinCAB,PHt,同理可求QN6t,四边形PQNH是矩形,PHNQ,6tt,t3;当t3时,四边形PQNH为矩形;(3)如图2,过点Q作QNAF于点N,由(2)可知QN6t,cosPAHcosCAB,AHt,四边形QCGH的面积为SS梯形GMFHSCMQSHFQ,S /t+6+8t) /_t) t)(8t+6)t2t;(4)存在,理由如下:如图3,连接PF,延长AC交EF于K,ABBE8cm,BCBF6cm,ACEF10cm,ABCEBF(SSS),ECAB,又ACBECK,ABCEKC90,SCEM /_ (/)CK,PF平分AFE,PHAF,PKEF,PHPK,t102t,t,当t时,使点P在AFE的平分线上

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 模拟试题
版权提示 | 免责声明

1,本文(2021年山东省青岛市中考数学试卷.docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|