1、 完美WORD格式.整理 中考解直角三角形考点一、直角三角形的性质 1、直角三角形的两个锐角互余:可表示如下:C=90A+B=902、在直角三角形中,30角所对的直角边等于斜边的一半。3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2c2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2b2c2,那么这个三角形是直角三角形。考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角
2、形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2a2b2,则ABC是以C为直角的三角形;若a2b2c2,则此三角形为钝角三角形(其中c为最大边);若a2b2c2,则此三角形为锐角三角形(其中c为最大边)4. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问
3、题。(4)利用勾股定理,作出长为的线段考点三、锐角三角函数的概念 1、如图,在ABC中,C=90 锐角A的对边与斜边的比叫做A的正弦,记为sinA,即锐角A的邻边与斜边的比叫做A的余弦,记为cosA,即锐角A的对边与邻边的比叫做A的正切,记为tanA,即锐角A的邻边与对边的比叫做A的余切,记为cotA,即2、锐角三角函数的概念锐角A的正弦、余弦、正切、余切都叫做A的锐角三角函数3、一些特殊角的三角函数值三角函数 30 45 60sincostan1cot14、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90A),cosA=sin(90A) ;(2)平方关系:(3)倒数关系:tan
4、Atan(90A)=1(4)商(弦切)关系:tanA=5、锐角三角函数的增减性当角度在090之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);(4)余切值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。2、解直角三角形的理论依据在RtABC中,C=90,A,B,C所对的边分别为a,b,c(1)三边之间的关
5、系:(勾股定理)(2)锐角之间的关系:A+B=90(3)边角之间的关系:正弦sin,余弦cos,正切tan(4) 面积公式: (hc为c边上的高)考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度和水平宽度的比叫做坡度(坡比)。用字母表示,即。坡度一般写成的形式,如等。 把坡面与水平面的夹角记作(叫做坡角),那么。3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC、OD的方向角分别是:45
6、、135、225。练习题1矩形的边长分别为与,则两条对角线长的和是( )A. B. C. D. 2在中,AB=2,AC=1,则的值是( )A. B. C. D. 3如图,在矩形ABCD中,DEAC于E,设,且,AB=4,则AD的长为( )A.3 B. C. D. 4在高出海平面100米的山岩上一点A,看到一艘船B的俯角为300,则船与山脚的水平距离为( ) A.50米 B.200米 C.100米 D.米5在中,AB的坡度i=1:2,那么BC:CA:AB等于( )A1:2: B1:2 C1: D1:2:56在中,分别为的对应边,则 7计算:(1) (2)(3)8.在等腰中,AB=AC,如果AB=
7、2BC,画图并计算的四个三角函数值? 9如图所示,已知:在中,AB=8,求的面积(结果可保留根号)10.已知为锐角,且,求的值11.如图,小明想测量塔BC的高度。他在楼底A处测得塔顶B的仰角为;爬到楼顶D处测得大楼AD的高度为18米,同时测得塔顶B的仰角为,求塔BC的高度。12.一张宽为4,长为5的矩形纸片ABCD,沿对角线BD对折,点C落在点位置,B交AD于G,求AG的长。附加题1.如图,在RtABC中,C=90,BC=4,AC=3,CDAB于D,设ACD=,则cos的值为( )A B C D2.菱形OABC在平面直角坐标系中的位置如图所示,AOC=450,OC=,则点B的坐标为( )A.
8、() B. C. D. 3.如图,已知ABC中,ABC=900,AB=BC,三角形的顶点在相互平行的三条直线上,且之间的距离为2,之间的距离为3,则AC的长是( ) A. B. C. D.74.已知A为锐角,且cosA,那么( )A.0A60 B.60A 90 C.0A30 D.30A905.当时,下列不等式中正确的是( )。A. B. C. D.6.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是( ) A.cm B. cm C. cm D. 2cm7.如图,在矩形ABCD中,DEAC于E,EDC:EDA=1:3,且AC=10,则DE的长度是( )A. 3 B. 5 C. D
9、. 8.若太阳光线与地面成300角,一棵树的影长为10米,则树高h的范围是( )() A. B. C. D.9.如图,ABCD是一个正方形,P、Q是正方形外的两点,且APD和BCQ都是等边三角形,则tanPQD( ) A. B. C. D. 10.如图,在RtABC中,ACB=900,sinB=,D是BC上一点,DEAB于E,CD=DE,AC+CD=9,求:BC的长;CE的长。11.如图,已知BCAD于C,DFAB于F,,BAE=。 (1)求的值; (2)若,AF=6时,求tanBAD的值。12.在正方形ABCD中,F是CD上一点,AEAF,AE交CB的延长线于点E,连结EF交AB于点G. (
10、1)求证:DFFC=BGEC; (2)已知:当tanDAF=时,AEF的面积为10cm2,问当tanDAF=时,AEF的面积是多少?第三部分 真题分类汇编详解2007-2012(2007)19(本小题满分6分)一艘轮船自西向东航行,在A处测得东偏北21.3方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5方向上之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3,tan21.3, sin63.5,tan63.52)(2008)19(本小题满分6分)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,表示
11、窗户,且米,表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线的最小夹角为,最大夹角为请你根据以上数据,帮助小明同学计算出遮阳蓬中的长是多少米?(结果保留两个有效数字)CGEDBAF第19题图AB(参考数据:,)(2009)19(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度他们首先从A处安置测倾器,测得塔顶C的仰角,然后往塔的方向前进50米到达B处,此时测得仰角,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度(参考数据:,)A(2010)19(本小题满分6分)小明家所在居民楼的对面有一座大厦AB,AB米为测量这座居民楼与大厦之间的距离,小明从自己家的
12、窗户C处测得大厦顶部A的仰角为37,大厦底部B的俯角为48求小明家所在居民楼与大厦的距离CD的长度(结果保留整数)(参考数据:)解:D37C48B 第19题图4035ADBC(2011)19(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40减至35已知原楼梯AB长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m参考数据:sin400.64,cos400.77,sin350.57,tan350.70)(2012)20.(8分)附历年真题标准答案:(2007)19(本小题满分6分)BCDA解:过C作AB的垂线,交直线AB于点D,得到RtACD与RtBCD设BDx海里,在Rt
13、BCD中,tanCBD,CDx tan63.5在RtACD中,ADABBD(60x)海里,tanA,CD( 60x ) tan21.3 xtan63.5(60x)tan21.3,即 解得,x15答:轮船继续向东航行15海里,距离小岛C最近 6(2008)19(本小题满分6分)解:设CD为x ,在RtBCD中, , 2CGEDBAF第19题图在RtACD中, , , 答:CD长约为1.14米 (2009)19(本小题满分6分)解:由题意知,设,在中,则;在中,则, ,(米)答:古塔的高度约是39米6分B3748DCA第19题图(2010)19(本小题满分6分)解:设CD = x在RtACD中,则,.在RtBCD中,tan48 = ,则,. 4分ADBD = AB,解得:x43答:小明家所在居民楼与大厦的距离CD大约是43米 6分(2011)19(本小题满分6分)(2012)20.(8分) . 专业资料分享 .