1、高中数学高考综合复习专题 概率与统计(二)一、知识网络: 二、高考考点:1.离散型随机变量的分布列、期望与方差以及运用期望与方差的意义解决实际问题;2.抽样方法的概念与区别;3.总体分布值所用的计算;正态分布的公式以及正态分布曲线的性质应用;4.线性相关以及回归方程的意义。三、知识要点:(二)统计1、抽样方法统计的基本思想是用样本估计总体,即通常不是直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。1o简单随机抽样设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,并且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。认知:()简单随
2、机抽样的特点总体的个体数有限;从总体中逐个地进行抽取;等概率(不放回)抽样()通过逐个抽取的方法从总体中抽取一个容量为n的样本,每次抽取一个样本时各个个体被抽到的概率(记为P1)相等,并且在整个抽样过程中各个个体被抽到的概率(记为P2)也相等,但这里P1P2。公式:如果运用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本,则(在整个抽样过程中)每个个体被抽到的概率为 。(1)抽签法将总体中所有个体编号,并把号码写在形状、大小相同的号签上,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出一个号签,连续抽取n次,就得到一个容量为n的样本,当总体的个体数不多时,适宜采用这种方
3、法。(2)随机数表法事先制好随机数表,表中共随机出现0,1,2,9十个数字且在表中每个位置上出现各个数字的概率都是相等的,在此基础上,严格按照课本介绍的步骤进行。2o系统抽样(1)定义当总体中的个体数较多时,将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这样的抽样叫做系统抽样。系统抽样与简单随机抽样的联系在于:将总体匀分后的每一部分进行抽样时,采用的是简单随机抽样。(2)系统抽样的步骤编号:采用随机方式将总体中的个体编号;分段:将整个编号进行分段,分段的间隔 ;当 时,在随机性和客观性的保障下,从总体中剔除一些个体后使剩下的总体中的个数N能被n整除
4、,并取 ;确定起始个体编号:在第一段用简单随机抽样确定起始的个体编号 ;按照事先确定的规则抽取样本:通常是将 加上间隔 ,得到第2个编号 + ,再将( + )加上 ,得到第3个编号 + ,如此继续下去,直到获得整个样本。3o 分层抽样(1)定义当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,而后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层,分层抽样与简单随机抽样或系统抽样的联系:将总体分成几层,分层抽取时采用简单随机抽样或系统抽样。(2)分层抽样的特点分层抽样充分利用了已知信息,使样本具有较好的代表性,在各层抽样时,可以
5、根据具体情况采取不同的抽样方法,按照各层所占比例抽取样本。小结:三种抽样方法的比较类别共同点 各自特点相互联系适用范围简单随机抽样 抽样过程中每个个体被抽取的概率相等 从总体中逐个抽取 总体中的个体数较少系统抽样 将总体均匀分成几部分,按事先确定的规则在各部分抽取 在起始部分抽取时采用简单随机抽样 总体中的个体数较多分层抽样 将总体分成几层,分层进行抽取。各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2、总体分布的估计用样本的某种特征去估计总体的相应特征,是统计学处理问题的基本方法,其中的重要方面,是利用样本的频率分布估计总体取值的概率分布规律(总体分布),即利用频率分布表、条
6、形图及频率分布直方图去估计分布。1o 第一种情况当总体中的个体取的值很少时,其频率分布的表示形式主要有两种:(1)频率分布表:由所取样本的不同数值及其相应频率构制而成。试验结果频数频率第一组个体所取数值 第二组个体所取数值 在这里,对总体中的个体所取数值进行分组之后,落在各个小组内的数值的个数叫做频数,每一小组的频数与数据总数的比值叫做这一小组的频率,其特点是:在对n个数据进行整理的频率分布表中,各组的频数的总和等于样本容量,各组频率的总和则等1。(2)条形图:上述频率分布表的几何表示其中,横轴表示试验结果的若干情况(即个体的若干取值),纵轴表示各试验结果的频率值(即个体取不同数值的频率),条
7、形图是用其高度表示取各值的频率(参见课本典型问题的条形图)。2o 第二种情况当总体中的个体取不同数值较多,甚至无限时,其频率分布的表示形式为以下两种形式:(1)频率分布表研究一批数据的频率分布,一般按以下步骤进行计算数据中最大值与最小值的差(极差),了解这批数据变动的范围。决定组数与组距:根据一批数据的多少,将数据分成若干组,目的是描述数据分布的规律,组距是指每个小组的两个端点之间的距离。决定分点:使分点与数据多一位小数,并且把第一组的起点稍微减小一点。列出频率分布表:已知数据落在各小组内的数据的个数叫做这一小组的频数,每小组的频数与数据总数的比值叫做这一小组的频率,计算出各个小组的频率,填入
8、表中分组频数累计频数频率 这个表叫做频率分布表(2)频率分布直方图为将频率分布表中的结果直观形象地表示出来,常常绘制出频率分布直方图:以横轴表示各组分布,纵轴表示(各组)频率与组距的比值,以各个组距为底,以各组频率除以组距的商为高,分别画成矩形,便得到频率分布直方图,在这里,每个矩形面积都等于相应小组的频率,即小矩形面积= ;各组频率之和等于1,即各小矩形的面积之和为1。3o 两种情况的比较与延伸有比较才能有鉴别,比较与鉴别是深化认知的基本途径。(1)上述两种情况的不同之处情况1的频率分布表中列出的是几个不同数值的频率,相应的条形图是用其高度来表示各个值的频率;情况2的频率分布表列出的是在各个
9、不同区间内取值(连续型总体)的频率,相应的直方图是用矩形面积的大小来表示在相应区间内取值的频率。(2)延伸当样本容量无限增大,分组的组距无限缩小时,频率直方图便会无限接近于一条光滑曲线总体密度曲线,总体密度曲线反映了总体分布,即反映了总体在各个范围内取值的概率,根据这一曲线,可求出总体在区间( )内取值的概率:它等于总体密度曲线,直线 轴共同围成的图形面积。认知:同一试验中的每次抽取个体,可以看成在同一随机试验下相应随机变量所取的一个值,当总体与随机变量如此沟通之后,总体分布即相应的随机变量的频率分布,于是,我们可以运用概率的理论来研究和解决统计问题。3、正态分布(1)定义如果随机变量的概率密
10、度函数为 ,则称服从参数为的正态分布,记作N( ), 的图象称为正态曲线。特例:当=0,=1时,正态总体称为标准正态总体,相应的函数表达式为 ,相应的曲线称为标准正态曲线。认知:()若N( ),则参数表示总体的平均数:E=;参数表示总体的标准差: ()当N( )时, 。(2)正态曲线的性质()曲线在x轴上方,与x轴不相交;()曲线关于直线x=对称;()当x=时曲线位于最高点;()当x时,曲线上升,当x时,曲线下降,并且当曲线向左、右两边无限延伸时,以x轴为渐进线,向x轴无限靠近,呈现出“中间高、两边低”的钟型曲线。()当一定时,曲线的形状由确定,越大,曲线矮胖,表示总体的分布越分散;越小,曲线
11、瘦高,表示总体的分布越集中。()当相同时,正态分布曲线的位置由期望值确定。(3)正态分布与标准正态分布如果随机变量的概率密度函数为 ,则称服从标准正态分布,即(0,1)。1o 当(0,1)时,在标准正态分布表中,相应于x0的值(x0)是指总体取值小于x0的概率,即(x0)=P(xx0)其中,当x00时,(x0)的值可在标准正态分布表中查到;当x00时,由(x0)=1-(-x0)计算(x0)的值。在这里,标准正态曲线与x轴之间的区域面积表示总体取值的概率,其值为1。 据此通过查出标准正态分布表中x=a,x=b时(x)的值,进而计算出概率 2o 当N( )时,() ;() ; (4)假设检验方法的
12、基本思想与生产过程中质量控制图()假设检验的基本思想根据小概率事件在一次试验中几乎不可能发生的原理和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设。假设检验是就正态总体而言,进行假设检验的三部曲为提出统计假设,统计假设中的变量服从正态分布 ;确定一次实验中的取值 是否落入范围 ;作出推断:如果 ,则接受统计假设;如果 ,则拒绝统计假设。()生产过程中的质量控制图及其原理生产过程中的质量控制图及其原理,根据上述假设检验的基本思想制作:将正态分布曲线顺时针旋转90o即得质量控制图(本书从略)。四、经典例题例1、某单位有120人,其中青年技术工人60人,工程师36人
13、,技术研究人员24人,从中抽取一个容量为20人的样本,分别采用简单随机抽样、分层抽样和系统抽样三种方法,试论证不论哪种抽样方法,每个个体被抽到的概率都是相等的。 证明:(1)简单随机抽样法:每个个体被抽到的概率均为 ;(2)系统抽样方法:将120人平均分成20个小组,每组6人,每组取1人,则每个个体被抽到的概率也是 ;(3)分层抽样法:青年技工、工程师、研究员之比为60:36:24=5:3:2,又 , , ,故应当从青年技工、工程师、研究员中分别抽取10人,6人,4人,每个个体被抽到的概率分别为 , , ,即均为 ;于时可知,不论采用哪一种抽样方法,总体的每一个个体被抽到的概率都是 。点评:简
14、单随机抽样法、系统抽样法、分层抽样法,这三种抽样方法既存在差异又相互联系,三种抽样方法的共同点:在抽样过程中,每一个个体被抽到的概率都是相等的,均等于样本容量n与总体中的个体数量N的比值 。例2 、(1)某中学高一年级组有400人,高二年级组有320人,高三年级组有280人,以每人被抽取的概率为0.2,向该中学抽取一个容量为n的样本,则n= ;(2)若从高一的107名学生中,采用系统抽样法抽取10名学生作为样本,则每名学生被抽到的概率为 。解:(1)由 得n=200;(2)循着系统抽样的步骤,“从107名学生中随机抽取100名,即随机剔除7名”,则任一学生a被抽取的概率为 ,又“将这100名学
15、生平均分成10部分,再从每一部分中抽取一名学生”,学生a被抽取的概率为 ,故在这一抽样过程中学生a被抽取的概率为 。点评:我们从本例再一次看到,不管应用上述哪一种抽样方法,从个体数为N的总体中抽取容量为n的样本,每个个体被抽取的概率均为 。例3、(1)要从10名女生和5名男生中选出6名学生组成数学研究性学习小组,如果按性别比例分层随机抽样,则组成该学习小组的概率为 ;(2)某同学有课外书36本,其中教辅类图书18本,文学类图书12本,其它类型图书6本,现要从中抽取一个容量为n的样本,若采用系统抽样和分层抽样,都不必剔除个体;若样本容量为n+1,则采用系统抽样时,需要从总体中剔除1个个体,则n=
16、 。解:(1)注意到 ,故按性别比例应抽取男生 (名),抽取女生 (名),组成研究性学习小组的个数为 ,又从15名学生中选6名组成学习小组的结果总数 ,故所求概率为 。(2)由题设知,采用系统抽样时,对整个编号分段的间隔 ,由此得n的可能取值为n=4,6 又由已知得 由、得n=6。例4、(1)已知 ,E3,D=1,则P(-11)等于 (用(x)的值表示)。(2)已知 ,则 = 。(3)已知离散型随机变量N(0,1),P(0)= ;P(-22)= 。(4)抽样调查表时,某中学高三年级学生成绩(总分750分)近似服从正态分布,平均成绩500分,若P(400x450)=0.3,则P(550x600)
17、= 分析:(1)由,2的定义得=3,2=1故有N(3,1), (2)借助换元转化:令 ,则N(0,1) 即 查标准正态分布表得(0.20)=0.5793,故有 ,解得 =10;(3)注意到标准正态曲线的对轴轴为x=10,并且这里=1,故有 ;(4)注意到xN(500,2) ,其概率密度曲线关于直线x=500对称,故在以=500为中心的对称区间400,450与550,600上x取值的概率相等,于是可得 。点评:在这里(1)、(2)的求解利用了“三基”:基本概念、基本方法与基本公式,而(3)、(4)的求解则主要运用了概率密度曲线的几何性质,它们从不同的侧面展示了正态分布问题的解题策略。例5、设随机
18、变量 ,且已知P(0.5)=0.0793,P(1.5)=0.7611,求和的值。解:考虑利用标准正态分布转化为方程组问题求解。 ,由P(0.5)=0.0793得 查表得 由P(1.5)=0.7611得P(1.5)=0.2389 查表得 于是将、联立解得=2.515,=1.43。点评:本例展示了正态分布问题中寻求待定系数的基本方法。例6、已知生产工艺过程中产品的尺寸偏差(mm)M(0,2.5),如果产品的尺寸与规定的尺寸偏差的绝对值不超过3mm为合格品,试求(1) 的概率密度函数;(2) 生产的5件产品的合格率不小于80%的概率。解:(1)由 得=0,2=2.5=0, 的概率密度函数为 (2)设
19、表示5件产品中的合格品数,则由题意知服从二项分布,且(5,p),其中 =0.9426 = 0.9707例7、某射手对100个靶各射击5次,记下命中数,射击结果如下表:命中数012345频数3182931145(1)列出频率分布表;(2)画出频率分布条形图;(3)求命中不少于3次的概率。解:(1)频率分布表命中数012345合计频数3182931145100频率0.030.180.290.310.140.051(2)频率分布条形图如图所示: (3)由频率分布表知命中不少于3次的概率为0.31+0.14+0.05=0.50例8、为了解高中学生的身高情况,对育才中学同龄的50名男生的身高进行了测量,
20、结果如下:(单位:cm)175168170176167181162173171177171171173174175177166163160174166166163164174165175165170158174172166172167172175161173167170172165157172173166171169181试列出样本的频率分布表,画出频率分布直方图。解:在这个样本中,最大值为181,最小值为157,极差为181-157=24,据此取组距为4,分为7组,并取第一组起点为156.5,则根据题间列出样本的频率分布表如下:分组频数频率156.5160.530.06160.5164.54
21、0.08164.5168.5120.24168.5172.5120.24172.5176.5130.26176.5180.540.08180.5184.520.04合计501.00根据上表,画出所求频率直方图如下: 例9、某中学高一年级期末后,为评价该年级的数学成绩,从中抽取50人作为样本,成绩记录如下:4749505355606163636566676769697070727373747575757676767878798080818183848585858688889095959596979898 (1) 列出样本的频率分布表(含累积频率);(2) 画出频率直方图和累积频率分布图;(3)
22、根据累积分布图,估计数学优秀率(85分以上)所占百分比。解:(1)在这个样本中,最大值为98,最小值为47,极差98-47=51。据此取组距为10,分为6组,并取第一组起点为40,第6组终点为100;根据题意样本的频率分布表如下:成绩分组频数频率累积频率40,50)20.040.0450,60)30.060.04+0.06=0.1060,70)100.200.04+0.06+0.20=0.3070,80)150.300.04+0.06+0.20+0.30=0.6080,90)120.240.04+0.06+0.20+0.30+0.24=0.8490,100)80.160.04+0.06+0.2
23、0+0.30+0.24+0.16=1.00合计501.00 (2)频率直方图: 累积频率分布图:从略。(3) 由累积分布图可知,85分以下的学生成绩约占70%,故数学优秀率约为30%。五、高考真题(一)选择题1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270;使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: 7,34,61,88,115,142,1
24、69,196,223,250; 5,9,100,107,111,121,180,195,200,265; 11,38,65,92,119,146,173,200,227,254; 30,57,84,111,138,165,192,219,246,270。关于上述样本的下列结论中,正确的是( )A. 、都不能为系统抽样 B. 、都不能为分层抽样C. 、都可能为系统抽样 D. 、都可能为分层抽样分析:由系统抽样的特点知,不是系统抽样,否定C;可能为系统抽样,由此又否定A。又由题设知,若采用分层抽样,则各年级抽取的人数比为108:81:81=4:3:3,一年级标号1108,二年级标号109189,三
25、年级标号190270,因而110应有4个号,109189有3个号,190270有3个号,据此否定B,因此应选D。2.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为( ) A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83分析:由频数与频率的关系知,若频数成等差数列或等比数列,则相应地频率也成等差数列或等比数列。设从左至右9组的频率依次为a1,a2,a3,a4,a5
26、,a6,a7,a8,a9,其中a1=0.01,a2=0.03, ,a1,a2,a3,a4成等比数列, , 并且a1,a2,a3,a4中a4最大 又设a4,a5,a6,a7,a8,a9的公差为d,则 另一方面, 由此解得 中a4最大 由、得 因此, 第4组至第7组的频数为 0.78100=78.即 b=78 于是由,知,应选A。点评:若注意到a为频率,故这里0a1,由此理否定C,D,故解题的关键是求解b的值。(二)填空题1.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位
27、“喜欢”摄影的同学,1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班学生人数的一半还多 人。分析:由题设知,全班同学中对摄影“喜欢”、“不喜欢”、“一般”的人数均为5:1:3,故可设这三部分学生的人数分别为5x,x,3x,全班人数为9x,又由题设知 , , 应填3。2.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检验这批产品的质量,决定采用分层抽样的方法进行抽样。已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品。分析:由题意设来自甲、乙、丙3条生产线的个体数依次为a-d,a,a+d,则有 ,由此解得a=
28、5600. 乙生产线生产5600件产品,应填5600。(三)解答题1.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值为50元的奖品;有二等奖券3张,每张可获价值为10元的奖品;其余6张没有奖。某顾客从10张券中抽2张,求(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值(元)的概率分布和期望E。分析:由题设可知,从10张券中任抽两张,由此引出的每一抽奖事件为等可能性事件,于是循着古典概型的解题思路求解、计算。解:(1)由题设知,顾客中奖包括两种情况:一种情况是所抽两张券均中奖,有 种结果;另一种是所抽两张券中一张中奖,一张不中奖,有 种结果。又这里基本事件总数为 ; 顾客中奖
29、的概率 (2)的所有可能取值为0,10,20,50,60(元) , , , , 故的分布列为:010205060P的数学期望 点评:从中奖的各种情况分析切入,导出=0,10,20,50,60(元),是解题的关键环节。2.某城市有甲、乙、丙3个旅游景点,一位客人游览这3个景点的概率分别为0.4,0.5,0.6,且客人是否游览哪个景点互不影响。设表示客人离开城市时游览的景点数与没有游览的景点数之差的绝对值。(1)求的分布列及数学期望;(2)证“函数 在区间2,+)上单调递增”为事件A,求事件A的概率。分析:为便于化抽象为具体,分别设出客人游览各景点的事件,进而考察的取值与P(=k)的计算。解:设事
30、件A1:客人游览甲景点;事件A2:客人游览乙景点;事件A3:客人游览丙景点,则事件A1、A2、A3相互独立,且 , , 注意到客人游览的景点数的可能取值为0,1,2,3,相应地,客人没有游览的景点数的可能取值为3,2,1,0,的可能取值为1,3又 , 的分布列为:13P0.760.24 (2) , 在区间 上单调递增, 要使 在区间 上单调递增,当且仅当 即所求事件A的概率为0.76。点评:从函数解析式入手,认知 的单调递增区间,进而由已知条件入手导出 ,于是所求概率P(A)与用表示的事件的概率 建立联系,问题转化获得成功。3.A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏:当出现
31、正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止。设表示游戏终止时掷硬币的次数。(1)求的取值范围;(2)求的数学期望E。分析:在这里,“A赢得B一张卡片”与“B赢得A一张卡片”是等可能性的,从设出正面朝上的次数入手导求的取值。解:(1)解法一:设硬币正面朝上的次数为m,反面朝上的次数为n,掷硬币的次数小于9次,某人已赢得所有卡片,游戏终止则由题意得 当m=5,n=0或m=0,n=5时=5,当m=6,n=1或m=1,n=6时=7,掷硬币的次数达9次,游戏终止=9的可能取值为5,7,9,解法二:由题意有 又两位同学都持有奇数张(5张
32、)卡片,不能为偶数=5,7,9(2)注意到这里“=k”包括的三种情形: , , 点评:对于=7,即游戏终止时共掷硬7次此时有m=6,n=1或m=1,n=6而“m=6,n=1”表示第7次正面向上,且前5次中有一次正面朝下(有4次正面朝上)所以,“m=6,n=1”这一事件发生的概率为: 因此有 。4.某地最近出台一项机动车驾照考试规定,每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列和的期望,并求李明
33、一年内领到驾照的概率。分析:注意到李明每次参加考试是相互独立的,因而考虑将有关事件表为基本事件的积,并利用乘法公式计算相关概率。解:由题设知随机变量的可能取值为1,2,3,4“=1”表示第一次通过,故P(=1)=0.6;“=2”表示“第一次未通过,而第二次通过”,故P(=2)=(1-0.6)0.7=0.28;“=3”表示“前两次未通过,而第三次通过”,故P(=3)=(1-0.6)(1-0.7)0.8=0.096;“=4”表示“前三次未通过”,故P(=4)=(1-0.6)(1-0.7)(1-0.8)=0.024;(1)随机变量的分布列为1234P0.60.280.0960.024 (2)李明在一
34、年内领到驾照的概率为 点评:在这里“=4”与“=3”的意义不同“=3”表示“前两次均未通过,而第3次通过”,“=4”表示“前三次均未通过”(而第4次具有通过和不通过两种可能)因此有P(=4)=(1-0.6)(1-0.7)(1-0.8)0.9+(1-0.6)(1-0.7)(1-0.8)(1-0.9)=(1-0.6)(1-0.7)(1-0.8).5.某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级,对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品。(1)已知甲、乙两种产品每一道工序的加工结果为A
35、级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P甲、P乙; (2)已知一件产品的利润如表二所示,用、分别表示一件甲、乙产品的利润,在(1)的条件下,求、的分布列及E、E; (3)已知生产一件产品需用的工人数和资金额如表三所示。该工厂有工人40名,可用资金60万元。设x、y分别表示生产甲、乙产品的数量,在(2)的条件下,x、y为何值时,z=xE+yE最大?最大值是多少?(解答时须给出图示) 解:(1)由已知得 P甲=0.80.85=0.68,P乙=0.750.8=0.60;(2)随机变量的分布列为:52.5P0.680.32随机变量的分布列为:2.51.5P0.60.4 , ;(3)由题设得 目标函数为 即 作出可行域(如图)作直线 ,将 向右上方平移至l的位置,即直线经过可行域上的点M时,z=4.2x+2.1y取何最大值,解方程组 得M(4,4) 当x=y=4时,z=xE+yE取得最大值25.2点评:认知题意,及时转化为线性规划问题是解(3)的关键所在。