[初三数学]中考数学难题大集合之二.doc

上传人(卖家):2023DOC 文档编号:5697252 上传时间:2023-05-04 格式:DOC 页数:32 大小:2.61MB
下载 相关 举报
[初三数学]中考数学难题大集合之二.doc_第1页
第1页 / 共32页
[初三数学]中考数学难题大集合之二.doc_第2页
第2页 / 共32页
[初三数学]中考数学难题大集合之二.doc_第3页
第3页 / 共32页
[初三数学]中考数学难题大集合之二.doc_第4页
第4页 / 共32页
[初三数学]中考数学难题大集合之二.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、12已知:如图,直角梯形中,(1)求梯形的面积;(2)点分别是上的动点,点从点出发向点运动,点从点出发向点运动,若两点均以每秒1个单位的速度同时出发,连接求面积的最大值,并说明此时的位置ADCFBE第22题图3(本小题满分9分)已知:如图,为平面直角坐标系的原点,半径为1的经过点,且与轴分交于点,点的坐标为,的延长线与的切线交于点(1)求的长和的度数;(2)求过点的反比例函数的表达式BACDyxO第23题图4(本小题满分9分)已知:如图,在平面直角坐标系中,是直角三角形,点的坐标分别为,(1)求过点的直线的函数表达式;(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;(3)在(

2、2)的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如存在,请求出的值;如不存在,请说明理由ACOBxy第24题图5(本小题满分9分)已知:如图,直线与x轴相交于点A,与直线相交于点P(1)求点P的坐标(2)请判断的形状并说明理由F第23题图yOAxPEB(3)动点E从原点O出发,以每秒1个单位的速度沿着OPA的路线向点A匀速运动(E不与点O、A重合),过点E分别作EFx轴于F,EBy轴于B设运动t秒时,矩形EBOF与OPA重叠部分的面积为S求: S与t之间的函数关系式 当t为何值时,S最大,并求S的最大值6(本小题满分9分)已知:抛物线(a0),顶点C (1,),与x轴交

3、于A、B两点,(1)求这条抛物线的解析式(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PMAE于M,PNDB于N,请判断是否为定值? 若是,请求出此定值;若不是,请说明理由(3)在(2)的条件下,若点S是线段EP上一点,过点S作FGEP ,FG分别与边AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断是否成立若成立,请给出证明;若不成立,请说明理由第24题图COxADPMEBNy7(本小题满分9分)已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正

4、比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点当四边形的面积为6时,请判断线段与的大小关系,并说明理由(第22题图)yxOoADMCB8(本小题满分9分)如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值ADCBMN(第23题图)(3)试探究:为何值时,为等腰三角形9(本小题满分9分)已知:抛物线的对称轴为与轴交于两点

5、,与轴交于点其中、(1)求这条抛物线的函数表达式(2)已知在对称轴上存在一点P,使得的周长最小请求出点P的坐标(3)若点是线段上的一个动点(不与点O、点C重合)过点D作交轴于点连接、设的长为,的面积为求与之间的函数关系式试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由ACxyBO(第24题图)10(本小题满分9分)如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,BAD=60,点A的坐标为(2,0) 求线段AD所在直线的函数表达式O第22题图xyABPCD动点P从点A出发,以每秒1个单位长度的速度,按照ADCBA的顺序在菱形的边上匀速运动一周,

6、设运动时间为t秒求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?11(本小题满分9分)已知:ABC是任意三角形如图1所示,点M、P、N分别是边AB、BC、CA的中点求证:MPN=A如图2所示,点M、N分别在边AB、AC上,且,点P1、P2是边BC的三等分点,你认为MP1N+MP2N=A是否正确?请说明你的理由ABCNMPAMNP1CP2BACMNP1P2P2009B第23题图2第23题图1第23题图3如图3所示,点M、N分别在边AB、AC上,且,点P1、P2、P2009是边BC的2010等分点,则MP1N+MP2N+MP2009N=_(请直接将该小问的答案写在横线上)12(本小题满

7、分9分)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E求A、B、C三个点的坐标点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN求证:AN=BMDCMNOABPl第24题图yE在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.x13(本小题满分11分)如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD(1)判断ABC的形状,并说明理由;(2)保持图1中A

8、BC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;(3)保持图2中ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧)试探究线段AD、BE、DE长度之间有什么关系?并给予证明图1图2图3第25题图14(本小题满分13分)如图:二次函数y=x2 + ax + b的图象与x轴交于A(-,0),B(2,0)两点,且与y轴交于点C(1)求该抛物线的解析式,并判断ABC的形状;(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请

9、直接写出D点的坐标;(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由ACB第26题图1516.17. 已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上ACB = EDF = 90,DEF = 45,AC = 8 cm,BC = 6 cm,EF = 9 cm如图(2),DEF从图(1)的位置出发,以1 cm/s的速度沿CB向ABC匀速移动,在DEF移动的同时,点P从ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当DEF的顶点D移动到AC边上时,DEF停止移

10、动,点P也随之停止移动DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0t4.5)解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由ADBCF(E)图(1)ADBCFE图(2)PQ(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由(图(3)供同学们做题使用)18(本小题满分12分)如图,在梯形ABCD中,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC

11、出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE若设运动时间为(s)()解答下列问题:(1)当为何值时,?(2)设的面积为(cm2),求与之间的函数关系式;(3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由(4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由AEDQPBFC第24题图1920212223. 24(11分)OABClyx如图,在直角坐标系中,点的坐标分别为,过三点的抛物线的对称轴为直线为对称轴上一动点(1) 求抛物线的解析式;(2) 求当最小时点的坐标;(3) 以点为圆心,以为半径作证明:当最小时,直线与相切写出直线与相切时,点的另一个坐标

12、:_24(12分)一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接(1)若点在反比例函数的图象的同一分支上,如图1,试证明:;(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论OCFMDENKyx(第25题图1)OCDKFENyxM(第25题图2)25(本小题满分10分)如图,OAB是边长为2的等边三角形,过点A的直线(1) 求点E的坐标;(2) 求过 A、O、E三点的抛物线解析式;(3) 若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,

13、求S的最大值。26.在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(第26题)OABCMN(2)旋转过程中,当和平行时,求正方形 旋转的度数;(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.27. 如图,中,.半径为1的圆的圆心以1个单位/的速度由点沿方向在上移动,设移动时间为(单位:).(1)当为何值时,与相切;(2)作交于点,如果和线段交于点,证明:当时,四边形为平行四边形.(第24题)图1图228

14、. 如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径大圆的弦AB,BE分别与小圆相切于点C,FAD,BE相交于点G,连接BDACBDGFEO(第22题)(1)求BD 的长;(2)求ABE+2D的度数;(3)求的值29. 已知是方程的两个实数根,且(1)求及a的值;(2)求的值30如图,在平面直角坐标系中,正方形OABC的边长是2O为坐标原点,点A在x的正半轴上,点C在y的正半轴上一条抛物线经过A点,顶点D是OC的中点(1)求抛物线的表达式;(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与E

15、G的长度;OABCDEyxFGHIJK(第24题)(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明OHIJKC31. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以

16、P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由ABDCPQMN(第25题)32. 23(10分)徒骇河大桥是我市第一座特大型桥梁,大桥桥体造型新颖,气势恢宏,两条拱肋如长虹卧波,极具时代气息(如图)大桥为中承式悬索拱桥,大桥的主拱肋ACB是抛物线的一部分(如图),跨径AB为100m,拱高OC为25m,抛物线顶点C到桥面的距离为17m(1)请建立适当的坐标系,求该抛物线所对应的函数关系式;(2)七月份汛期来临,河水水位上涨,假设水位比AB所在直线高出1.96m,这时位于水面上的拱肋的跨径是多少?在不计桥面厚度的

17、情况,一条高出水面4.6m的游船是否能够顺利通过大桥?33. (12分)如图,已知正方形ABCD的边长与RtPQR的直角边PQ的长均为4cm,QR8cm,AB与QR在同一条直线l上开始时点Q与点B重合,让PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,ts时PQR与正方形ABCD重叠部分的面积记为Scm2(1)当t3s时,求S的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;BCPDARQl(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?34 如图,AB,BC分别是的直径和弦,点D为上一点,弦DE交于点E,交AB于点F,交BC于点G,过点C的切线交ED

18、的延长线于H,且,连接,交于点M,连接 求证:(1); (2)35 ADGECB(第25题图) 如图,直角梯形ABCD中,且,过点D作,交的平分线于点E,连接BE(1)求证:;(2)将绕点C,顺时针旋转得到,连接EG.求证:CD垂直平分EG.(3)延长BE交CD于点P求证:P是CD的中点36如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是(1) 求抛物线对应的函数表达式;(2) 经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3) 设直线与y轴的交点是,在线段上任取一点(不与重合),经

19、过三点的圆交直线于点,试判断的形状,并说明理由;OBxyAMC1(第26题图)(4) 当是直线上任意一点时,(3)中的结论是否成立?(直接写结论)3738.39.40.4142如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ABC的面积为。(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。43如图1,在中,于点,点是边上一点,连接交于,交边于点(1)求证:;(2)当为边中点,时,如

20、图2,求的值;(3)当为边中点,时,请直接写出的值BBAACOEDDECOF图1图2F44(本题满分12分)如图,抛物线经过、两点,与轴交于另一点(1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;yxOABC(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标45. 27如图,RtABC内接于O,AC=BC,BAC的平分线AD与0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G (1)判断0G与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若,求O的面积。46在平面直角坐标系xOy中

21、,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COSBCO。 (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由; (3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?47. 为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经

22、营的利润逐步偿还无息贷款已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示(1)求月销售量(万件)与销售单价(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润销售额生产成本员工工资其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?421406080x(元)(万件)yO48(本题满分10分)如图,二次函数()的图象与轴交于两点,与轴相交于点连结两点的坐标分别为、,且当和时二次函数的函数值相等(1)求实数

23、的值;(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由yOxCNBPMA49.如图,点P的坐标为(2,),过点P作轴的平行线交轴于点A,交双曲线于点N,作PMAN交双曲线于点M,连接AM已知PN=4(1)求的值;(2)求APM的面积。50. 如图,直线分别与轴、轴交于A、B两点;直线与AB交于点C,与过点A且平行于轴的直线交于点D点E

24、从点A出发,以每秒1个单位的速度沿轴向左运动过点E作轴的垂线,分别交直线AB、OD于P、Q两点以PQ为边向右作正方形PQMN设正方形PQMN与ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为(秒)(1)求点C的坐标;(2)当00时,直接写出点(4,)在正方形PQMN内部时的取值范围 (参考公式:二次函数图象的顶点坐标为(,)51. 52.53.温州(本题ll分)如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点8,与反比例函数y一罟在第一象限的图象交于点c(1,6)、点D(3,x)过点C作CE上y轴于E,过点D作DF上X轴于F (1)求m,n的值;(2)求直线AB

25、的函数解析式;(3)求证:AECDFB 52(本题ll分)如图,在ABC中,C=90,AC=3,BC=40为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE (1)当BD=3时,求线段DE的长; (2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F求证:FAE是等腰三角形 53.(本题l4分)如图,在平面直角坐标系中,点A(,0),B(3,2),(0,2)动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动过点E作EF上AB,交BC于点F,连结DA、DF设运动时间为t秒(1)求ABC的度

26、数;(2)当t为何值时,ABDF;(3)设四边形AEFD的面积为S求S关于t的函数关系式;若一抛物线y=x2+mx经过动点E,当S2时,求m的取值范围(写出答案即可)54.55.衡阳如图11,AB是O的直径,弦BC=2cm,ABC=60(1)求O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,BEF为直角三角形55、如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作M

27、COA于点C,MDOB于D(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与AOB重叠部分的面积为S试求S与的函数关系式并画出该函数的图象56.浙江湖州57.孝感 如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0k2|k1|)于E、F两点(1)图1中,四边形PEOF的面积S1= (用含k1、k2的式子表示);(3分)(2)图2中,设P点

28、坐标为(4,3)判断EF与AB的位置关系,并证明你的结论;(4分)记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由(5分)58.襄樊59. (2009年四川南充市)如图9,已知正比例函数和反比例函数的图象都经过点(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由yx

29、OCDBA33660.宁波 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(8,0),直线BC经过点B(8,6),将四边形OABC绕点O按顺时针方向旋转度得到四边形OABC,此时声母OA、直线BC分别与直线BC相交于P、Q(1)四边形的形状是 ,当=90时,的值是 (2)如图2,当四边形OABC的顶点B落在y轴正半轴上时,求的值;如图3,当四边形OABC的顶点B落在直线BC上时,求OPB的面积(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使BP=?若存在,请直接写出点P的坐标;基不存在,请说明理由61.62.深圳(本题8分)如图10,AB是O的直径,AB=10,DC

30、切O于点C,ADDC,垂足为D,AD交O于点E(1)求证:AC平分BAD;(4分)(2)若sinBEC=,求DC的长(4分)62(本题10分)已知:RtABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与轴重合(其中OA0,0),连接DP交BC于点E当BDE是等腰三角形时,直接写出此时点E的坐标(3分)又连接CD、CP(如图13),CDP是否有最大面积?若有,求出CDP的最大面积和此时点P的坐标;若没有,请说明理由(3分)图13图12图1163.64.贵州安顺65.宜宾66.咸宁(10分)如图,在平面直角坐标系中,O为坐标原点,边长为5的等边OAB的OA边

31、在x轴的正半轴上点C、D同时从点O出发,点C以1个单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动设运动时间为t秒,0t5(1)当0t时,证明:CDOA;(2)若OCD的面积为S,求S与t的函数关系式;(3)以点C为中心,将CD所在的直线顺时针旋转60交AB于点E,若以点O、C、E、D为顶点的四边形是梯形,求点E的坐标AAOOBBCDxxyy备用图67.68.荆门(本题满分10分)一次函数y=kxb的图象与x、y轴分别交于点A(2,0),B(0,4)(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PCPD的最小值,并求取得最

32、小值时P点的坐标 第24题图68(本题满分12分)一开口向上的抛物线与x轴交于A(m2,0),B(m2,0)两点,记抛物线顶点为C,且ACBC(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由第25题图69.70茂名如图,在中,点是边上的动点(点与点不重合),过动点作交于点 (1)若与相似,则是多少度?(2分) (2)试问:当等于多少时,的面积最大?最大面积是多少?(4分) (3)若以线段为直径的圆和以线段为直

33、径的圆相外切,求线段的长(4分)60ADCB(第24题图)P70(本题满分10分)已知:如图,直线:经过点一组抛物线的顶点(为正整数)依次是直线上的点,这组抛物线与轴正半轴的交点依次是:(为正整数),设 (1)求的值;(2分) (2)求经过点的抛物线的解析式(用含的代数式表示)(4分) (3)定义:若抛物线的顶点与轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”探究:当的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的的值(4分)(第25题图)yOMxnl12371.72.芜湖(本小题满分12分)如图,在中,斜边,为的中点,的外接圆与交于点,过作的切线

34、交的延长线于点(1)求证:;AEFODBC第23题图(2)计算:的值72(本小题满分15分)如图,在平面直角坐标系中放置一直角三角板,其顶点为,将此三角板绕原点顺时针旋转,得到(1)如图,一抛物线经过点,求该抛物线解析式;32112AO第24题图Bxy(2)设点是在第一象限内抛物线上一动点,求使四边形的面积达到最大时点的坐标及面积的最大值73.74仙桃(本题满分10分)如图所示,在ABC中,D、E分别是AB、AC上的点,DEBC,如图,然后将ADE绕A点顺时针旋转一定角度,得到图,然后将BD、CE分别延长至M、N,使DMBD,ENCE,得到图,请解答下列问题:(1)若ABAC,请探究下列数量关

35、系:在图中,BD与CE的数量关系是_;在图中,猜想AM与AN的数量关系、MAN与BAC的数量关系,并证明你的猜想;ABCDE(第24题图)(第24题图)BCDAEABCDE(第24题图)NMABCDE(第24题图)NM(2)若ABkAC(k1),按上述操作方法,得到图,请继续探究:AM与AN的数量关系、MAN与BAC的数量关系,直接写出你的猜想,不必证明74(本题满分12分)如图,直角梯形ABCD中,ADBC,ABC90,已知ADAB3,BC4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动过Q点垂直于AD的射线交AC于点M,交BC于点NP、Q两点同时出发,速度都为每秒1个单位长度当Q点运动到A点,P、Q两点同时停止运动设点Q运动的时间为t秒(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形?(3)是否存在某一时刻,使射线QN恰好将ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;ABCDQMNP(第25题图)(4)探究:t为何值时,PMC为等腰三角形?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 各科综合资料
版权提示 | 免责声明

1,本文([初三数学]中考数学难题大集合之二.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|