1、精品文档中考数学压轴题汇编开始y与x的关系式结束输入x输出y1、(安徽)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:()新数据都在60100(含60和100)之间;()新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。(1)若y与x的关系是yxp(100x),请说明:当p时,这种变换满足上述两个要求;(2)若按关系式y=a(xh)2k(a0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系
2、式符合题意作说明,但要写出关系式得出的主要过程)【解】(1)当P=时,y=x,即y=。y随着x的增大而增大,即P=时,满足条件()3分又当x=20时,y=100。而原数据都在20100之间,所以新数据都在60100之间,即满足条件(),综上可知,当P=时,这种变换满足要求;6分(2)本题是开放性问题,答案不唯一。若所给出的关系式满足:(a)h20;(b)若x=20,100时,y的对应值m,n能落在60100之间,则这样的关系式都符合要求。如取h=20,y=,8分a0,当20x100时,y随着x的增大10分令x=20,y=60,得k=60 令x=100,y=100,得a802k=100 由解得,
3、 。14分2、(常州)已知与是反比例函数图象上的两个点(1)求的值;(2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由解:(1)由,得,因此2分(2)如图1,作轴,为垂足,则,因此由于点与点的横坐标相同,因此轴,从而当为底时,由于过点且平行于的直线与双曲线只有一个公共点,故不符题意3分当为底时,过点作的平行线,交双曲线于点,过点分别作轴,轴的平行线,交于点由于,设,则,由点,得点因此,解之得(舍去),因此点图2图1此时,与的长度不等,故四边形是梯形5分如图2,当为底时,过点作的平行线,与双曲线在第一象限内的交点为由于,因此,从
4、而作轴,为垂足,则,设,则,由点,得点,因此解之得(舍去),因此点此时,与的长度不相等,故四边形是梯形7分如图3,当过点作的平行线,与双曲线在第三象限内的交点为时,同理可得,点,四边形是梯形9分图3综上所述,函数图象上存在点,使得以四点为顶点的四边形为梯形,点的坐标为:或或10分3、(福建龙岩)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形若存在,求出所有符合条件的点坐标;不存在,请说明理由ACByx011解:(1)抛物线的对称轴2分(2) 5分把点
5、坐标代入中,解得6分7分Ax011y(3)存在符合条件的点共有3个以下分三类情形探索设抛物线对称轴与轴交于,与交于过点作轴于,易得, 以为腰且顶角为角的有1个:8分在中,9分以为腰且顶角为角的有1个:在中,10分11分以为底,顶角为角的有1个,即画的垂直平分线交抛物线对称轴于,此时平分线必过等腰的顶点过点作垂直轴,垂足为,显然 于是13分14分注:第(3)小题中,只写出点的坐标,无任何说明者不得分5、(甘肃陇南)如图,抛物线交轴于A、B两点,交轴于点C,点P是它的顶点,点A的横坐标是3,点B的横坐标是1(1)求、的值;(2)求直线PC的解析式;(3)请探究以点A为圆心、直径为5的圆与直线PC的
6、位置关系,并说明理由(参考数:,)解: (1)由已知条件可知: 抛物线经过A(-3,0)、B(1,0)两点 2分解得 3分 (2) , P(-1,-2),C 4分设直线PC的解析式是,则 解得 直线PC的解析式是 6分说明:只要求对,不写最后一步,不扣分 (3) 如图,过点A作AEPC,垂足为E设直线PC与轴交于点D,则点D的坐标为(3,0) 7分在RtOCD中, OC=, 8分 OA=3,AD=6 9分 COD=AED=90o,CDO公用, CODAED 10分 , 即 11分 , 以点A为圆心、直径为5的圆与直线PC相离 12分6、(贵阳)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角
7、为的扇形(1)求这个扇形的面积(结果保留)(3分)(2)在剩下的三块余料中,能否从第块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由(4分)(3)当的半径为任意值时,(2)中的结论是否仍然成立?请说明理由(5分)解:(1)连接,由勾股定理求得:1分2分(2)连接并延长,与弧和交于,1分弧的长:2分圆锥的底面直径为:3分,不能在余料中剪出一个圆作为底面与此扇形围成圆锥4分(3)由勾股定理求得:弧的长:1分圆锥的底面直径为:2分且3分即无论半径为何值,4分不能在余料中剪出一个圆作为底面与此扇形围成圆锥7、(河南)如图,对称轴为直线x的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解
8、析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)当四边形OEAF的面积为24时,请判断OEAF是否为菱形?是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由BACDPOQxy8、(湖北黄岗)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且AOC=60,点B的坐标是,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,设秒后,直线PQ交OB于点D.(1)求AOB的度数及线段OA的长;(2)求经过A,B
9、,C三点的抛物线的解析式;(3)当时,求t的值及此时直线PQ的解析式;(4)当a为何值时,以O,P,Q,D为顶点的三角形与相似?当a 为何值时,以O,P,Q,D为顶点的三角形与不相似?请给出你的结论,并加以证明.9、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合)现将PAB沿PB翻折,得到PDB;再在OC边上选取适当的点E,将POE沿PE翻折,得到PFE,并使直线PD、PF重合(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求
10、过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标图1图2我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。因此饰品这一行总是吸引很多投资者的目光。然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿
11、海城市最新流行的一种。解:(1)由已知PB平分APD,PE平分OPF,且PD、PF重合,则BPE=90OPEAPB=90又APBABP=90,OPE=PBA除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。RtPOERtBPA2分自制饰品一反传统的饰品消费模式,引导的是一种全新的饰品文化,所以非常容易被我们年轻的女生接受。即y=(0x4)且当x=2时,y有最大值4分(4)牌子响(2)由已知,PAB、POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3)6分创业首先要有“风险意识”,要能承受住风险和失败。还要有责任感,要对
12、公司、员工、投资者负责。务实精神也必不可少,必须踏实做事;设过此三点的抛物线为y=ax2bxc,则创业首先要有“风险意识”,要能承受住风险和失败。还要有责任感,要对公司、员工、投资者负责。务实精神也必不可少,必须踏实做事;y=8分手工艺品,它运用不同的材料,通过不同的方式,经过自己亲手动手制作。看着自己亲自完成的作品时,感觉很不同哦。不论是01年的丝带编织风铃,02年的管织幸运星,03年的十字绣,04年的星座手链,还是今年风靡一时的针织围巾等这些手工艺品都是陪伴女生长大的象征。为此,这些多样化的作品制作对我们这一创业项目的今后的操作具有很大的启发作用。(3)由(2)知EPB=90,即点Q与点B
13、重合时满足条件9分十几年的学校教育让我们大学生掌握了足够的科学文化知识,深韵的文化底子为我们创业奠定了一定的基础。特别是在大学期间,我们学到的不单单是书本知识,假期的打工经验也帮了大忙。直线PB为y=x1,与y轴交于点(0,1)将PB向上平移2个单位则过点E(0,1),该直线为y=x110分“漂亮女生”号称全国连锁店,相信他们有统一的进货渠道。店内到处贴着“10元以下任选”,价格便宜到令人心动。但是转念一想,发夹2.8元,发圈4.8元,皮夹子9.8元,好像和平日讨价还价杀来的心理价位也差不多,只不过把一只20元的发夹还到5元实在辛苦,现在明码标价倒也省心省力。由得Q(5,6)在上海, 随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。在人民广场地下“的美”购物中心,有一家DIY自制饰品店-“碧芝自制饰品店”。故该抛物线上存在两点Q(4,3)、(5,6)满足条件12分精品文档