1、 【经典资料,文档,可编辑修改】 【经典考试资料,答案附后,看后必过,文档,可修改】高考命题设计与考核能力要求-数学数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力,以及运用所学数学知识和方法分析和解决实际问题的能力数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查一、命题原则学科考试目标确定了学科考查的总要求,在命题工作中如何贯彻指导思想,将对知识、方法、能力的要求落实到具体题目
2、,组成一张理想的试卷则可依据一定的原则进行具体操作,这就是命题原则命题原则是编拟试题、组成试卷时所遵循的行为准则具体地,高考数学命题的基本原则是:1体现学科特点数学是研究现实世界空间形式和数量关系的科学,高度的抽象性、结论的确定性和应用的广泛性是数学的特点数学的研究对象和特点体现在数学考试中就形成数学考试的学科特点(1)概念性强数学是由概念、命题组成的逻辑系统,而概念是基础,是使得整个体系连结成一体的结点数学中每一术语、符号和习惯用语都有着明确具体的内涵这个特点反映到考试中就要求考生在解题时首先要透彻理解概念的含义,弄清不同概念之间的区别和联系,切忌将数学语言和日常用语混为一谈,更不应出现“望
3、文生义”之类的错误(2)充满思辨性这个特点源于数学的抽象性、系统性和逻辑性数学知识不是经过观察实验总结出来的,而是经演绎推理而形成的逻辑体系,逻辑推理是其基本的研究方法;数学不是知识性的学科,而是思维型的学科因此,数学试题靠机械记忆,只凭直觉和印象作答的很少为了正确解答,总要求考生具备一定的观察、分析和推断能力(3)量化突出数量关系是数学领域研究的一个重要方面,也是数学测试不可缺少的内容,因此数学试题中定量性占有较大比重,试题中的定量要求一般不是简单、机械的计算,而是把概念、法则、性质寓于计算之中,在运算过程中考查考生对算理、运算法则的理解程度、灵活运用的能力及准确严谨的科学态度由此可见,突出
4、量化是数学试题的一个明显特点,并有重要的意义(4)解法多样一般数学试题的结果虽确定惟一,但解法却多种多样,有利于考生发挥各自的特点,灵活解答,真正显现其水平,命题时应考虑各种等价解法的考查重点和难易大致相同,解答到同样深度给同样的分值,不同解法的考查要求符合命题的初衷,能实现考查目的数学试题的特点是高考数学命题的基础,在命题过程中应充分考虑这些特点,发挥数学内部的选拔机制,实现高考的选拔功能2控制试卷难度高考的目的是为高校选拔新生,但其要求仍要以高中教学水平为基础因此,确定试卷的要求是命题的关键全日制中学数学教学大纲既是实施教学的依据,也是高考命题的依据,试题考查的知识和能力要求都不能超出教学
5、大纲的规定由于目前高考对中学教学有较大的影响,数学考试的内容和形式都应当有利于中学数学的教学改革数学高考不同于数学竞赛首先,考试内容不同,高考内容限制在中学教学大纲规定的范围内,以传统的初等数学为主;数学竞赛以数论、组合数学内容为主,所受限制较少其次,考查要求不同,高考以知识为基础来考查各种能力;而竞赛试题涉及知识点一般不多,主要考查灵活解题的技巧及较高层次的能力最后,高考兼有速度要求,试卷难度适中,一般考生都能得到基本分;而竞赛是典型的难度考试,试卷难度很大,只有极少数考生能取得较好成绩高考与高中毕业会考也有实质的区别,尽管两种考试在考查的知识内容上大致相同,但考查的能力要求却不尽相同,即在
6、教学大纲规定范围以内,考查深度不一样,由于会考是水平考试,考试内容要求属于成绩考试的范畴,会考命题是按照教学大纲的基本要求,并充分考虑本地区的教育水平;而高考毕竟要选拔合格高中毕业生中的少数人,因此高考命题当然要考虑使优秀学生的水平得以充分显现高考试卷的知识和能力要求,必须从选才角度出发,并兼顾高中教学的水平整份试卷要求的水平是通过试卷绝对难度体现的绝对难度可以理解为题目本身要求解答者所具有的智力活动水平的高低和智力活动量的测量一般认为题目能力要求的层次与题目绝对难度成正比,即只需要单独记忆内容的题目较易,需要理解掌握的较难,需要灵活应用的更难所以,试题绝对难度反映了试题与学科知识、能力要求的
7、适应程度在选拔性考试中,通过控制绝对难度可以实现考试大纲所要求的水平但更重要的是应控制试题要求的水平与考生知识能力水平适合的程度,即相对难度因为,高考为实现其选拔功能,试卷必须对不同水平的考生具有良好的区分能力,使考生分数的分布有利于从高分到低分“拉开距离”,特别是要拉开每年的前20%可能被录取的考生分数的距离因此高考试卷的难度,是由全体考生特别是成绩最好的20%的考生的水平决定的经典测量理论中建立在平均得分率意义上的试题难度,本质上是从考生的角度评价试题的难易,即试卷与考生整体水平的适应程度从这个意义上讲,控制相对难度比控制绝对难度更为重要根据教育测量学原理,大规模考试的整卷难度在05左右最
8、为理想,可以使考生成绩呈正态分布,标准差比较大,各分数段考生人数分布比较合理,对考生总体的区分能力最强但考虑到我国中学的评价方法和评价机制尚不健全,高考事实上对高中教学有着较强的评价导向作用,为稳定高中教学秩序,照顾全国总体的实际教学水平,整卷难度控制在055左右比较合适为控制整卷难度,首先要认真了解、分析当年考生经过系统的复习、训练、强化后的水平,分析考生的知识基础和能力构成,注重试题水平与考生水平的基本吻合,不能片面强调不同年份间试题绝对难度的稳定其次要恰当控制试卷中各个试题的难度,一般在0208左右,整个试卷中各种难度试题分数的分布也应该适当最后还要考虑到我国教育发展极不平衡的现状及不同
9、地区考生差别很大的事实,在每种题型中都编拟一些较易试题,使大部分考生都得到一定的基本分在每种题型中都编拟一些有一定难度的试题,实现选拔的目的注意文史类和理工农医类试卷的区别由于理工农医类高校与文史类高校对新生数学水平的要求存在着差别,所以考试中分为两类试卷在内容上,文科要求少一些,“反三角函数和简单三角方程”、“参数方程和极坐标”不作要求在新课程的高考中,文理科考试内容和要求有更大的差别在导数部分,文科试卷只有多项式函数的导数在概率与统计部分文科的要求只含统计的内容,包括:抽样方法,总体分布的估计,总体期望值和方差的估计理科的要求包括:离散型随机变量的分布列,离散型随机变量的期望值和方差,抽样
10、方法,总体分布的估计,正态分布,线性回归理科有复数,文科没有复数随着社会科学的发展及文科专业理论研究、实际应用中定量化的趋势日益加强,对文科考生的数学要求也在逐渐提高但文理科试卷在难度上也还有差别,试卷中交叉共用的部分多数属于中等难度的试题3合理配置题型,发挥各种题型功能试题的内容要求和能力要求是通过一定的形式呈现的题型就是体现考试要求的形式不同类型试题在考查不同知识和能力要求上有不同的功能一个考试所采用的题型,主要取决于考试目的、内容和误差控制等要求,近年来,高考数学科选用的题型主要有四选一的选择题,以及填空题和解答题以考生作答方式和评分方法分类,选择题、填空题应属于客观题,因其评分不受评分
11、者主观因素的影响,而解答题应属主观题主、客观性试题的比例是值得注意的一个问题,应从我国提倡的标准化考试的目的、性质出发,从本学科的知识与智能结构出发来确定题型及其比例题型要为考试内容来服务,内容才决定了题型现行高考中,数学科试卷三种题型的比例是40,10和50,这是考虑到考试目的、学科特点、评卷工作量和评卷误差等多种因素,经综合平衡后确定的(1)数学因为其学科特点,不但要考查考生应当掌握的数学知识,而且要考查考生必须掌握的数学方法,考查应用知识和方法的能力以及分析问题和解决问题的过程,即不但要在知识的领会层次上对考生进行测试,还要在运用、分析、综合和评价层次上测试考生的能力,因此必须保持一定数
12、量的解答题解答题作为一种主观题,要求考生写出解题过程,能够比较全面地反映考生学科智力水平,展示其分析数学问题、综合运用数学知识进行逻辑思维的过程,适合对发散、综合、评价、复杂运算、文字表达等高层次能力的考查;一定量的解答题对中学教学也有较好的导向作用实验表明,客观题比例越大,考生对严密的逻辑推理、准确的计算和条理的表达等方面则越不重视,教学上相对来说可能放松要求,对中学数学教育产生不良影响但解答题作为一种主观题也有其本身的不足,如对评卷者要求较高,题量少覆盖面窄,特别是难以实行机器评卷,评卷效率低,等等因此,高考中不能像校内班级测验或“文革”前试卷那样全是解答题,应定出合适的比例(2)从考查目
13、标来看,高考强调在考查知识的基础上考查能力,因此需要一定的选择题考查基础知识,达到一定的覆盖面近几年来,选择题、填空题和解答题前半部分的试题难度比较低,其作用之一是考查考生基础知识的掌握情况,发挥高考对中学教学的评价作用;再一个就是使有一定数学基础的考生都能人手做题,并取得较好的成绩,进而提高全卷的平均分,增强其学习数学的兴趣和自信(3)从考试时间和题量看,数学科考试时间为120分钟,但覆盖面积要求较大,数学科有近130个知识点,为达到6070的覆盖面,如果每题平均24个知识论点,要有近30个题,显然靠解答题是不可能很好地实现考查目的的,因此必须要有一定数量的选择题以增加全卷题目数量,提高覆盖
14、率,同时也可以提高考试的信度和效度,使解答题真正发挥其考查综合分析、逻辑推理等复杂思维过程的功能(4)从阅卷来看,尽管现在对选择题的功能还存在着很大的争论,但我们不能不承认选择题阅卷速度快、误差小、效率高的特点,我们更不能不面对我国每年有近500万考生这样的事实,为解决评卷工作量大、劳动强度高、误差控制要求严、时间紧迫等问题,只有增加选择题的比例,采用机器阅卷,减轻评卷教师工作量,以提高阅卷的速度和质量对选择题本身的不足,我们已经采取措施弥补,采用一卷多卡、多卷(A、B卷)多卡等方式防止作弊(如有必要,今后可考虑采用多项选择题,即正确选项多于一个)4注重整体设计,发挥结构效应为发挥学科特点,体
15、现高考的选拔功能,发挥整份试卷的区分作用,还应注意对整卷效应的研究从系统论的观点来看,高考数学试卷是一个系统系统是由元素和结构决定的,试卷是由试题和试题的结构组成的系统的质量具有整体性,试卷的好坏取决于整张试卷产生的效应,而不仅仅是个别试题产生的效应,每一个试题都是好题,但拼起来不一定是一张好试卷,因此设计一张好的试卷不仅要选编好的试题,而且要注意试卷的整体结构,发挥整体效应(1)全面考查考生素质,在选拔中应强调,只有各方面的素质都比较好的学生才是高校所需的学生因此,试卷应有合理的知识结构和能力层次结构,知识结构是指试卷中包含学科各部分知识的比例在编制双向细目表时,应根据各部分内容的教学时数和
16、普通高考对考生知识结构的要求,确定试卷中各部分知识内容的分数比例,全面考查概念、定理、公式和法则等各项基础知识试卷能力层次结构反映试卷对能力要求的层次和比例试卷对能力要求的层次和比例,反映着考查的性质和要求同样的学科知识内容,不同性质的考试,对能力要求的层次和比例是不同的在考试中,应既考查数学能力,又考查一般认识能力,如观察力、注意力、记忆力、想象力和思维能力;既考查较高层次的能力,又考查较低层次的能力数学考试中,考试目标包括基本方法的内容,因此还应注意结合各项知识考查数学方法数学科的命题细目表应是三维表格,即知识内容、数学方法和能力层次只有三者有机结合,并融入具体的一道试题,才能有效地全面考
17、查考生素质(2)对数学基础知识的考查,要求全面又突出重点,注重学科的内在联系和知识的综合重点知识是支撑学科知识体系的主要内容,考查时要保持较高的比例,并达到必要的深度,构成数学试题的主体学科的内在联系,包括各部分知识在各自发展过程中的纵向联系,以及各部分知识之间的横向联系知识的综合性,则是从学科的整体高度考虑问题,在知识网络交汇点设计试题数学思想和方法是数学知识在更高层次上的抽象和概括,它是在数学知识发生、发展和应用的过程中孕育出来的因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度考查时,要从学科整体意义和思想含义上立意
18、,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度对能力的考查,以逻辑思维能力为核心,全面考查各种能力,强调综合性、应用性,切合考生实际运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是以含字母的式的运算为主,同时要兼顾算理和逻辑推理的考查空间想象能力是对空间形式的观察、分析、抽象的能力,图形的处理与图形的变换都要注意与推理相结合分析问题和解决问题的能力是上述三种基本数学能力的综合体现,对数学能力的考查要以数学基础知识、数学思想和方法为基础,加强思维品质的考查对数学应用问题,要把握好提出问题所涉及的数学知
19、识和方法的深度和广度,要切合我国中学数学教学的实际(3)确定试题难易比例,提高试卷区分能力试卷区分能力的强弱取决于试题区分度的高低,试题的区分度是试题对不同水平被试知识、能力水平区分鉴别的程度,区分度高的试题应使水平高的考生得高分,而水平低的考生得低分统计学中以考生在该题的得分与总分的相关系数计算区分度为使试卷有较强的区分能力,试卷必须有合理的难易结构试卷难易结构是试卷中试题难度要求的档次和比例合理的难易结构可以使试卷整体难度满足试卷应具有的区分能力的要求因为通常的高考试卷并不一定每道试题都具有高区分度,但测试诸如理解、掌握、综合运用和灵活运用等高层次的思维活动时,要有高区分度的试题这类试题的
20、特点是内容具有一定的深度和广度,知识点覆盖面大,考查的能力较高,题目综合性强其作用是给应试者留有较大的发挥余地,学业优秀的考生得以脱颖而出,各种水平的考生能得到相应的分数,拉开了考生的档次,有效地区分了考生统计资料的研究表明,试卷的整体难度控制在055060,试卷标准差最大,考生分数分布比较分散,试卷区分度最强,试卷中各种难度的档次一般这样界定:难度在07以上为易题,0407为中档题,04以下为难题试卷中易、中、难三种试题的比例为352比较合适,各种题型中易、中、难题目的比例分别为,选择题 321,填空题221,而解答题一般不安排易题,中档题和难题的比例为32为使考生产生良好的心理效应,发挥各
21、种题型的功能,试卷难度按两级坡度设计,整卷是一个大坡度,而每种题型由易到难又是一个坡度,各种题型中试题难度的起点都比较低,特别是在选择题部分,起点题水平相当于高中毕业考试的水平,其目的是测度全体考生对基础知识的掌握情况,为教学评价提供参考选择题最后几题的选项有较大的迷惑性,以此来区分基础知识掌握的深度和熟练运用的程度解答题变一题把关为多题把关,最后三题分别考查不同的内容并设置一定的关卡,区分考生综合和灵活运用数学知识分析问题、解决问题的能力(4)控制试卷长度、卷面字数和计算量试卷长度直接反映了试卷中题目数量,对实现考试目标有一定影响题量过少,将不能全面考查各种知识、方法和能力,而且在客观上会助
22、长猜题押题的风气;题量过大,多数考生在规定时间内不能答完全部题目,考试成绩与考生水平将会有较大的差距数学知识彼此联系非常紧密,而且注重在一定情境中的综合应用如果机械地套用语言测试的模式,题目很多,每题都很小,则只能简单地测试一些单个概念的记忆,既不能深入也不能综合,等于把知识体系肢解、割裂,抓不住数学的精髓,葬送了数学的价值因此数学中的题目,特别是选择题和填空题,不能太少,必须有一定的深度、一定的综合性数学试卷应注意难度考试为主的特点,试卷长度要控制恰当卷面字数指卷面印刷符号数量和考生答卷书写字符的总和为使考生能尽快、无误地获得信息,题目叙述应简单明了,字母、符号、标点都应正确运用并发挥其作用
23、,在语言不能简明叙述或不能清楚表达时,应注意各种符号和图形的运用,减少生活语言对数学语言的干扰控制考生答卷的书写时间,充分利用选择题书写答案简便的特点,尽量增加考生的思考时间试题应尽量避免繁难的运算,控制各题的计算量,排除由于计算过多过繁造成耗时较多,或计算错误造成全题失分的现象,以便集中考查考生的各种能力(5)编制公平的评分标准对解答题的解法,应优先考虑绝大部分考生所可能使用的方法,同时注意各种等价解法难度的平衡,并鼓励有创见的解法,各分数段的安排要科学合理,分数给在关键步骤,层次分明,尽量使之对不同形式的解都便于评阅分数的间隔不易过大,以23分为宜,以便控制评分误差二、能力要求普通高考的目
24、的和性质决定了它不仅要对考生的学科知识和具体技能进行考核,而且要对考生所学习的知识的内在联系、学科基本规律及方法的理解程度和应用程度进行考查,即考查考生的一般心理能力和学科能力从学科角度和命题实践出发,可将高考的数学考试的能力要求归纳为以下几个方面(1)逻辑思维能力:会对问题进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行判断和推理;能合乎逻辑地、准确地进行表述(2)运算能力:理解算理,会根据法则、公式、概念进行数、式、方程的正确运算和变形;能分析条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计,能运用计算器进行数值计算(3)空间想象能力:能根据条件画出正确的图形
25、,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变形(4)分析和解决实际问题的能力:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述1逻辑思维能力的考查逻辑思维能力主要是指使用形式逻辑的思维方式,正确合理地进行判断、推理的思考能力,包括观察、比较、分析、综合、抽象、概括、归纳、演绎、类比等逻辑思维能力是数学能力的核心,是人们进行思维活动的基础,是一个人基本素质的主要标志逻辑思维能力在数学科中是使用数学素材进行训练和培养的,但这种思维具有思维的一般性,
26、是完全可以脱离数学内容而适用于思维的一切领域因此,高考应把逻辑思维的考查放在重要的位置高考对逻辑思维的考查以演绎推理为重点,注意归纳和类比推理;考查观察、比较、分析、综合、抽象和概括能力;注意数学语言、普通语言的理解和运用;注意思维品质的考查(1)演绎推理数学是一个各部分紧密联系的逻辑系统,形式逻辑推理是基本方法由概念组成命题,由命题组成判断,由判断组成证明在数学领域中只有被严密逻辑证明了的结论才被承认为正确的,因此数学是体现逻辑最为彻底的学科中学没有逻辑学科,数学就很自然地承担了这方面的责任,因此数学考试中着重考查了演绎推理的能力演绎推理能力是指从定义出发进行分析、推理、论证的能力,其重点是
27、三段论推理大学对合格新生的要求一方面是掌握一定的数学知识,但更重要的是具有一定的能力在大学数学基础课程中,学生普遍感到困难的是线性代数,如向量空间究其原因,是学生利用原理、定义进行抽象推理的能力没有达到要求高考对逻辑思维能力的考查主要体现在对演绎推理的考查试卷中考查演绎推理的试题比例较大,命题时既要考虑使用选择题、填空题的形式进行考查,又要考虑如何使用解答题型,以证明题的形式突出进行考查试 题2000年若ab1,P=,Q=(lga+lgb),R=,则( )ARPQ BPQRCQPR DPRQ【分析】 本例的考查目的是想通过实数大小的比较来考查判断和推理能力,并且是以选择题的形式来考查演绎推理按
28、常规思路,解本题时主要使用平均值定理来进行判断 ab1, lga0,lgb0,lgalgb由平均值定理,得即 PQ又 a0,b0,ab再次使用平均值定理进行演绎推理,得则 而 所以 QR综上,有PQR,选B演绎推理是由一般到特殊的推理,也就是说:“一个命题在一般情况下成立,那么它在特殊情况下也成立”它的逆否命题也成立:“如果一个命题在特殊情况下不成立,那么它在一般情况下也不成立”对于用选择题给出的判断性问题,使用后一种思维进行推理,会更便捷一些令a=100,b=10,满足ab1的条件此时,=lg55容易得到PQR于是便可以把A、C、D项排除而选择B项两种不同的思考和解决问题的方法从不同的角度考
29、查了演绎推理,不同的方法体现了不同的考查要素高考对演绎推理的考查所使用的素材,有三角、代数的内容,也有立体几何、平面解析几何的内容,命题时从不同的侧面,使用不同的素材,设置不同的情境,全面地进行考查学生最初学习演绎推理时所使用的素材是平面几何的内容,是从平行线开始的因此学生头脑中的几何演绎推理模式较强,而代数演绎推理相对较弱初中学习一元二次方程的理论时,利用根的判别式、根与系数的关系进行演绎推理就感到比较困难高中的教材中虽然加强了代数演绎推理的教学,如函数单调性的证明、奇偶性的判定,但由于不等代数中缺少几何图形的直观辅助作用,学生对代数演绎推理感到抽象,仍是高中数学的难点之一再考虑到大学的要求
30、,无论是从选拔还是从对中学教学的正确导向考虑,高考都必须加强对代数演绎推理的考查在高考走过的路程中,已经积累了宝贵的经验试 题2001年已知i,m,n是正整数,且1imn()证明;()证明(1+m)n(1+n)m【分析】 本题以逻辑推理和代数变换为考查目的,选取了排列、组合和二项式定理的内容为依托,通过不等式的证明考查考生的逻辑推证能力本题对问题所涉及的知识要求很低,涉及的知识内容非常简单,只需要写出排列数、组合数和二项式的展开式,但推理能力要求高,应用排列、组合等知识考查考生的逻辑推理能力题目突破了已有的用作差或作商证明不等式的方法,要求考生将原不等式展开,以mn为起点,逐项比较,进行连续的
31、逻辑推证中学阶段,形如2n与n2的比较是常见的,推广到一般情形,就是这道考题实际上,掌握了前者,就不难理解和推导后者这种从特殊到一般的演进过程,正是数学科考试说明中逻辑思维能力所要求的:抽象、概括、归纳、类比本题的证明方法是最基本的解题过程中用到的知识和方法完全在大纲要求范围之内余下的工作就是寻找适当的方法,而方法也只是逐项比较大小,并不需要用什么特别的技巧然而对数学抽象符号的理解要求很高,对于运用数学符号进行思维的要求也很高,蕴涵了与高等数学的衔接,体现出对能力的较高要求,这可以拉开考生的差距,把优秀的学生选拔出来除了参考答案所列解法外,还可以用数学归纳法证明,当然,这要求考生对数学归纳法有
32、更深层次的理解照搬一些现成的证明套路是不能奏效的本题的面目新颖这类的题目在课本例题、复习资料、模拟试题中比较少见新颖的题目没有现成方法可借鉴,会使一些考生感到难以入手,从而导致这道题的得分率不高另一方面,新颖的考题有利于考查学生进入高等学校进一步学习的潜能,这与高考的宗旨是一致的应当说明的是,本题的考查目的不是要求强化不等式证明中的放缩法的应用,或强化排列、组合公式的灵活应用,或是强化数学归纳法的扩张性应用等某个具体知识点的教学,而是应当强化对数学公式或数学表达式更为基本的理解和基础的分析,使学生能对代数关系式的运算结构有更好的把握,并在此基础上进行有明确目的的运算或变形本题提高了对解决问题的
33、能力要求,增加了思考的容量,控制了计算量,要求考生抓住问题的实质,对试题提供的信息进行分捡、组合、加工,寻找解决问题的方法这样的试题,不同于知识型的试题,知识型的试题注重知识的记忆、解题的技巧,常伴有大量的运算,一般都可以通过一定时间的训练,形成固定的解题模式、记忆性的操作步骤,从而使解题过程变成一系列机械的操作程序能力型的试题没有固定的模式,难有现成的方法和套路可以套用,思维水平要求高,不强调解题技巧,无须死记硬背,思维容量大,运算量较小,能有效展示考生的思维水平和创造意识完成这样的试题需要有能力的培养,依靠“题海”和大运动量的操练是难以奏效的这样的问题作为高考的试题,力图能够考出学生的能力
34、和创新意识(2)归纳推理归纳推理和演绎推理是两种不同的思考和推理方法归纳推理是一种由旧事物发现新事物的推理方法,是创造力的一种成分虽然数学知识是一个演绎的知识体系,并且演绎推理是数学研究和学习的重要方法,但归纳的方法是获得数学结论的一条重要的途径,运用不完全归纳法通过观察、实验,从特例中归纳出一般结论,形成猜想,然后加以证明,这是数学研究的基本方法之一,是学生应当学习、理解的归纳推理可分为完全归纳和不完全归纳两种包括了所有可能情况的归纳称为完全归纳数学归纳法也是一种完全归纳法高考对归纳推理的考查是从这两个方面进行的试 题2002年理科设数列an满足,n=1,2,3,()设a1=2,求a2,a3
35、,a4,并由此猜想an的一个通项公式;()设a13时,证明对所有的n1,有(i)ann+2;(ii)【分析】 本题编拟的基本目的是考查代数推理能力,以考查演绎推理为主,兼顾归纳推理,在可能的范围和程度考查数学归纳法以往在考查数学归纳法时存在这样的情况,即对命题在从n=k是到n=k+1的推证过程中,考生并没有真正理解题目的要求,因为题目已经给出了大于、小于或等于的关系,只是形式地套用数学归纳法的模式,证明已知的关系因此这次编拟试题的基本原则一是尽量不出现“用数学归纳法证明”的字样,而在证题过程中自然用到数学归纳法,以避免套用之虞;二是尽量不出现变量间的大于、小于或等于的关系,要求考生自己判断,这
36、样就需要对题目透彻的理解,对结论准确的判断理科数列试题在编拟之初的原型是这样的:设数列an,bn满足,()设a1=2,求a2,a3,a4,并由此猜想an的通项公式;()当a1=3,b1=4时,比较an与bn的大小,并证明你的结论在第一问中,由递推公式求出数列的前几项是大纲对递推数列限定的要求,这样设问完全符合大纲的规定试题在此基础上进一步发展,但并没有要求考生求出数列的通项公式,而是猜想数列的通项公式,这是在不超纲的前提下的创新设计,考查了归纳猜想的能力数列对首项极其敏感,当a1=2时,很容易定出通项公式an=n+1但当a12时,an的增长速度很快,很难求出通项公式当a1=3,b1=4时,在进
37、行an与bn大小的比较时,由于存在一个变化较快的负项nan和nbn,因此an与bn的大小关系并不能简单地判定,一个比较常用的方法就是作差,应用数学归纳法进行证明因此通过这样的题型设计,让学生比较自然地想到应用数学归纳法同时要求考生先进行判断,再进行证明,达到考查数列和数学归纳法的目的2001年新课程理科解关于x的不等式【分析】 本题主要考查分式不等式的解法,同时考查分类讨论的数学思想方法本题是一个考查不等式解法的常规题,在解不等式的试题中具有一定的代表性,解题过程用的是通性通法,能够比较全面地考查考生对解不等式问题的掌握程度然而本题的更重要的考查目的是考查考生的逻辑思维能力,试题设置为分式不等
38、式,解题时必须将其化简,使其等价于两个一次不等式的并;同时在题目中设置了文字参数a,并把a定义为全体实数,解题时需要就a的不同的区间进行分类讨论、求出不等式的解集本题突出了对逻辑思维能力的考查,对分类讨论和抽象思维提出了很高的要求同时为突出这一考查目的,题目给出的条件尽量简化,参数只有a,而且a和a2的系数都为1,这样可以简化数字计算,重点考查逻辑思维能力原不等式的解集是下面不等式组的解集的并集:() ()分情况讨论:(i)当a0或a1时,有aa2,此时,不等式组()的解集为x|axa2,不等式组()的解集为(ii)当0a1时,有a2a,此时,不等式组()的解集为,不等式组()的解集为x|a2
39、xa(iii)当a=0或a=1时,原不等式的解集为综上,当a0或a1时,原不等式的解集为x|axa2;当0a1时,原不等式的解集为x|a2xa;当a=0或a=1时,原不等式的解集为(3)直觉思维数学思维主要是形式逻辑思维,逻辑思维操作的对象是概念,并严格遵循形式逻辑推理的规则直觉思维区别于逻辑思维的重要特征就是在没有经过严格的逻辑推理之前,迅速对事物作出判断,得出结论而且这种结论还需要严格的逻辑证明事实上,直觉思维得出的结论并不是主观臆断,而是以扎实的知识为基础,以对事物敏锐的观察、深刻的理解为前提的直觉思维是指不受固定的逻辑规则约束,直接领悟事物本质的一种思维方式在直觉思维过程中,人们以已有
40、的知识为根据,对研究的问题提出合理的猜测和假设,其中含有一个飞跃的过程,往往表现为突然的认识和领悟,直觉思维的特性主要表现在思维对象的整体性、思维产生的突发性、思维过程的非逻辑性、思维结果的创造性和超前性以及思维模式的灵活性和敏捷性等逻辑思维与直觉思维是两种基本的思维形式逻辑思维在数学中始终占据着主导的地位,而直觉思维又是思想中最活跃、最积极、最具有创造性的成分,逻辑思维与直觉思维形成了辩证的互补关系,它们的辩证运动构成了完整的数学思维过程直觉思维为演绎思维提供了动力并指示着方向,逻辑思维则对直觉思维作出检验与反馈,是直觉思维的深入和精化既然直觉思维与逻辑思维一起组成数学思维,那么在高考命题中
41、,很自然地要考虑如何对直觉思维进行考查考生在考试过程中直觉思维活动的结果是可以在卷面上反映出来的,但思维过程则很难反映出来因此,选择题、填空题的题型对考查考生的直觉思维有特别的作用我们在设计试题时,往往从多种方法、多个角度来考虑,使试题解答尽量应用多种思考方法,给考生提供较为广阔的思维空间由于考生在解答时思考的思维方式不同,那么他们解题所花费的时间也必定不同我们便以解答时间的长短来衡量考生的思维水平,解答正确而所用时间较少的考生,其思维水平较高在他们的思维过程中,必定含有直觉思维的因素解选择题时,鼓励考生使用“猜”的方法对不对呢?“猜”算不算数学?这些问题在一部分教师中还存在着不同的认识他们总
42、认为数学就是严格的推理、严密的证明,“猜”怎么能算数学呢?怎么能进入课堂?孰不知,“猜”是直觉思维的特性,是发明创造的基础,是人的素质的标志科学、合理的猜测是数学能力的体现!我们不鼓励胡猜、乱猜、瞎猜,而提倡合乎情理的猜想正如一些伟大的数学家所说:数学有两个侧面,一方面它是欧几里得式的严谨科学,从这方面看数学是一门系统的演绎科学,但另一方面创造过程中的数学,看起来更像一门试验性的归纳科学试 题1998年向高为H的水瓶中注水,注满为止,如果注水量V与水深入的函数关系如下图,那么水瓶的形状是( )【分析】 本题是一道应用题,其背景是向水瓶注水围绕这个背景,常见的提问方式是:给定瓶子的形状和尺寸,求
43、注水量与水深的函数关系式及其图像,这样做不仅落入俗套,而且主要的工作是计算、描点画图,思辨性不强因此,本题的题型设计采取了一个全新的角度,摒弃具体的计算和画图,突出观察、思维和分析能力的考查,把试题设计成定性型的选择题,开创了历年来高考数学试题中所未见的一种新型选择题题中把瓶子的形状置于选择项,并且不给参数,只是用图突出其形状;同时,用图表示注水量V与水深h的函数关系,图中也把细节隐去,只突出函数图像的起始和终止位置,以及图像曲线的状态,没有切实标出曲线上点坐标的定量关系,在这样的前提下,要求考生判断注水瓶子的形状如何这样一来,解答本题的思路就不应该抓细微的定量关系,而应该是观图看势,抓其特征
44、,进行分析、思考和判断因而对思维能力尤其是直觉思维的考查十分突出,比较深刻地考查了灵活运用知识解决问题的能力解本题时,主要是认真观察所给四个几何体的形状与所给函数图像的关系,抓住特殊位置进行直觉思维,可以取OH的中点,从图像可知,当高为一半时,其体积过半再看四个几何体,只有B符合,所以B为正确答案试 题2000年春季理科已知函数f(x)=ax3+bx2+cx+d的图像如下,则( )Ab(,0) Bb(0,1) Cb(1,2) Db(2,+)【分析】 本题主要考查函数的符号、图像和性质,考查直觉思维和推理判断能力从图中可以看出,0,1,2是函数 f(x)的零点,所以f(0)=f(1)=f(2)=
45、0即解得 b=3a从图像可以看出,当x时,f(x),当x+时,f(x)+,所以应当有a0,则b0选A在解答过程中,当根据题设条件得出b=3a后,题目给出的数量条件都已经用尽,如果按照常规思维,已经没有别的办法了但当对函数的图像进行细致入微的观察之后,我们还可以从图像中挖掘出更有价值的信息根据函数的图像在第一和第三象限无限伸展,经过直觉判断,可以得出a0的结论,进而有b0在解决本题的过程中,直觉思维发挥了关键的作用2运算能力的考查运算能力是思维能力和运算技能的结合它不仅包括数的运算,还包括对式的运算,对考生运算能力的考查主要是以含字母的式的运算为主,同时要兼顾对算理和逻辑推理的考查运算能力主要是
46、数与式的组合与分解变形的能力,包括数字的计算、代数式和某些超越式的恒等变形、集合的运算、解方程与不等式、三角恒等变形、数列极限的计算、几何图形中的计算等运算结果具有存在性、确定性和最简性运算能力是一项基本能力,在代数、立体几何、平面解析几何等学科中都有所体现在高考中半数以上的题目需要运算,运算的作用不仅是只求出结果,有时还可以辅助证明运算能力是最基础的又是应用最广的一种能力高考对运算能力的考查注重算理和符号运算考查,控制运算量,精确计算与合理估算结合(1)运算的准确运算的准确是对运算能力的基本要求,要求考生根据算理和题目的运算要求,有根有据地一步一步地实施运算影响运算准确的因素是多方面的,只要
47、在运算全过程的某一个环节出现问题,就会导致整个运算的错误在填空题中,一步算错,整题失分;在解答题中,某步出错,后继部分随之有误,最多只能得一半的分数在高考中重点强调的是:在运算过程中使用的概念要准确无误,使用的公式要准确无误,使用的法则要准确无误,最终才能保证运算结果的准确无误试 题2001年若定义在区间(1,0)内的函数f(x)=log2a(x+1)满足f(x)0则a的取值范围是( )A B C D(0,+)【分析】 本题主要考查运用对数函数的性质或对数运算法则进行基本计算的技能和能力题目所要求的a的取值范围的集合是a|对任意x(1,0),都有f(x)0其中,f(x)=log2a(x+1),因此,为了得到正确答案,可以应用对数函数的单调性,