1、2021年高考物理真题专题 综合计算题1.(2021浙江卷)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个
2、离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。(1)求离子从小孔S射出时相对推进器的速度大小vS;(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。答案:(1);(2);(3),方向沿z轴负方向解析:(1)离子从小孔S射出运动到金属板N中心点O处,根据动能定理有解得离子从小孔S射出时相对推进器的速度大小(2)当磁场仅有沿x方向的分量取最大值时,离子从喷口P的下边
3、缘中点射出,根据几何关系有根据洛伦兹力提供向心力有联立解得当磁场在x和y方向的分量同取最大值时,离子从喷口P边缘交点射出,根据几何关系有此时;根据洛伦兹力提供向心力有联立解得故的取值范围为;(3)粒子在立方体中运动轨迹剖面图如图所示由题意根据洛伦兹力提供向心力有且满足所以可得所以可得离子从端面P射出时,在沿z轴方向根据动量定理有根据牛顿第三定律可得离子束对推进器作用力大小为方向沿z轴负方向。2.(2021浙江卷)如图所示,水平地面上有一高的水平台面,台面上竖直放置倾角的粗糙直轨道、水平光滑直轨道、四分之一圆周光滑细圆管道和半圆形光滑轨道,它们平滑连接,其中管道的半径、圆心在点,轨道的半径、圆心
4、在点,、D、和F点均处在同一水平线上。小滑块从轨道上距台面高为h的P点静止下滑,与静止在轨道上等质量的小球发生弹性碰撞,碰后小球经管道、轨道从F点竖直向下运动,与正下方固定在直杆上的三棱柱G碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q点,已知小滑块与轨道间的动摩擦因数,。(1)若小滑块的初始高度,求小滑块到达B点时速度的大小;(2)若小球能完成整个运动过程,求h的最小值;(3)若小球恰好能过最高点E,且三棱柱G的位置上下可调,求落地点Q与F点的水平距离x的最大值。答案:(1)4m/s;(2);(3)0.8m解析:(1)小滑块轨道上运动代入数据解得(2)小滑块与小球碰撞后动量守恒
5、,机械能守恒,因此有,解得小球沿轨道运动,在最高点可得从C点到E点由机械能守恒可得其中,解得(3)设F点到G点的距离为y,小球从E点到Q点的运动,由动能定理由平抛运动可得,联立可得水平距离为由数学知识可得当取最小,最小值为3.(2021全国乙卷)如图,一倾角为的光滑固定斜面的顶端放有质量的U型导体框,导体框的电阻忽略不计;一电阻的金属棒的两端置于导体框上,与导体框构成矩形回路;与斜面底边平行,长度。初始时与相距,金属棒与导体框同时由静止开始下滑,金属棒下滑距离后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的
6、瞬间,导体框的边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小,重力加速度大小取。求:(1)金属棒在磁场中运动时所受安培力的大小;(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;(3)导体框匀速运动的距离。答案:(1);(2),;(3)解析:(1)根据题意可得金属棒和导体框在没有进入磁场时一起做匀加速直线运动,由动能定理可得代入数据解得金属棒在磁场中切割磁场产生感应电动势,由法拉第电磁感应定律可得由闭合回路的欧姆定律可得则导体棒刚进入磁场时受到的安培力为(2)金属棒进入磁场以后因为瞬间受到安培力的作用,根据楞次定律可知金属棒的安培力
7、沿斜面向上,之后金属棒相对导体框向上运动,因此金属棒受到导体框给的沿斜面向下的滑动摩擦力,因匀速运动,可有此时导体框向下做匀加速运动,根据牛顿第二定律可得设磁场区域的宽度为x,则金属棒在磁场中运动的时间为则此时导体框的速度为则导体框的位移因此导体框和金属棒的相对位移为由题意当金属棒离开磁场时金属框的上端EF刚好进入线框,则有位移关系金属框进入磁场时匀速运动,此时的电动势为,导体框受到向上的安培力和滑动摩擦力,因此可得联立以上可得,(3)金属棒出磁场以后,速度小于导体框的速度,因此受到向下的摩擦力,做加速运动,则有金属棒向下加速,导体框匀速,当共速时导体框不再匀速,则有导体框匀速运动的距离为代入
8、数据解得4.(2021全国甲卷)如图,长度均为l的两块挡板竖直相对放置,间距也为l,两挡板上边缘P和M处于同一水平线上,在该水平线的上方区域有方向竖直向下的匀强电场,电场强度大小为E;两挡板间有垂直纸面向外、磁感应强度大小可调节的匀强磁场。一质量为m,电荷量为q(q0)的粒子自电场中某处以大小为v0的速度水平向右发射,恰好从P点处射入磁场,从两挡板下边缘Q和N之间射出磁场,运动过程中粒子未与挡板碰撞。已知粒子射入磁场时的速度方向与PQ的夹角为60,不计重力。(1)求粒子发射位置到P点的距离;(2)求磁感应强度大小的取值范围;(3)若粒子正好从QN的中点射出磁场,求粒子在磁场中的轨迹与挡板MN的
9、最近距离。答案:(1) ;(2) ;(3)粒子运动轨迹见解析,解析:(1)带电粒子在匀强电场中做类平抛运动,由类平抛运动规律可知 粒子射入磁场时的速度方向与PQ的夹角为60,有 粒子发射位置到P点的距离 由式得 (2)带电粒子在磁场运动在速度 带电粒子在磁场中运动两个临界轨迹(分别从Q、N点射出)如图所示由几何关系可知,最小半径 最大半径 带电粒子在磁场中做圆周运动的向心力由洛伦兹力提供,由向心力公式可知 由解得,磁感应强度大小的取值范围(3)若粒子正好从QN的中点射出磁场时,带电粒子运动轨迹如图所示。由几何关系可知带电粒子的运动半径为 粒子在磁场中的轨迹与挡板MN的最近距离 由式解得 5.(
10、2021湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道。质量为的小物块A与水平轨道间的动摩擦因数为。以水平轨道末端点为坐标原点建立平面直角坐标系,轴的正方向水平向右,轴的正方向竖直向下,弧形轨道端坐标为,端在轴上。重力加速度为。(1)若A从倾斜轨道上距轴高度为的位置由静止开始下滑,求经过点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过点落在弧形轨道上的动能均相同,求的曲线方程;(3)将质量为(为常数且)的小物块置于点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨
11、道上,且A落在B落点的右侧,求A下滑的初始位置距轴高度的取值范围。答案:(1);(2)(其中,);(3)解析:(1)物块从光滑轨道滑至点,根据动能定理解得(2)物块从点飞出后做平抛运动,设飞出的初速度为,落在弧形轨道上的坐标为,将平抛运动分别分解到水平方向的匀速直线运动和竖直方向的自由落体运动,有,解得水平初速度为物块从点到落点,根据动能定理可知解得落点处动能为因为物块从点到弧形轨道上动能均相同,将落点的坐标代入,可得化简可得即(其中,)(3)物块在倾斜轨道上从距轴高处静止滑下,到达点与物块碰前,其速度为,根据动能定理可知解得 物块与发生弹性碰撞,使A和B均能落在弧形轨道上,且A落在B落点的右
12、侧,则A与B碰撞后需要反弹后再经过水平轨道倾斜轨道水平轨道再次到达O点。规定水平向右为正方向,碰后AB的速度大小分别为和,在物块与碰撞过程中,动量守恒,能量守恒。则解得 设碰后物块反弹,再次到达点时速度为,根据动能定理可知解得 据题意, A落在B落点的右侧,则 据题意,A和B均能落在弧形轨道上,则A必须落在P点的左侧,即: 联立以上,可得的取值范围为6.(2021春浙江卷)如图所示,竖直平面内由倾角a=60的斜面轨道AB、半径均为R的半圆形细圆管轨道BCDE和圆周细圆管轨道EFG构成一游戏装置固定于地面,B、E两处轨道平滑连接,轨道所在平面与竖直墙面垂直。轨道出口处G和圆心O2的连线,以及O2
13、、E、O1和B等四点连成的直线与水平线间的夹角均为=30,G点与竖直墙面的距离。现将质量为m的小球从斜面的某高度h处静止释放。小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力。(1)若释放处高度h=H,当小球第一次运动到圆管最低点C时,求速度大小vc及在此过程中所受合力的冲量的大小和方向;(2)求小球在圆管内与圆心O1点等高的D点所受弹力FN与h的关系式;(3)若小球释放后能从原路返回到出发点,高度h应该满足什么条件?【答案】(1),水平向左;(2)(hR);(3)【解析】(1)机械能守恒解得动量定理方向水平向左(2)机械能守恒牛顿第二定律解得满足的条件(3)第1种情况:不滑离
14、轨道原路返回,条件是第2种情况:与墙面垂直碰撞后原路返回,在进入G之前是平抛运动其中,则得机械能守恒h满足的条件7.(2021春浙江卷)嫦娥五号成功实现月球着陆和返回,鼓舞人心。小明知道月球上没有空气,无法靠降落伞减速降落,于是设计了一种新型着陆装置。如图所示,该装置由船舱、间距为的平行导轨、产生垂直船舱导轨平面的磁感应强度大小为B的匀强磁场的磁体和“”型刚性线框组成,“”型线框ab边可沿导轨滑动并接触良好。船舱、导轨和磁体固定在一起,总质量为m1整个装置竖直着陆到月球表面前瞬间的速度大小为v0,接触月球表面后线框速度立即变为零。经过减速,在导轨下方缓冲弹簧接触月球表面前船舱已可视为匀速。已知
15、船舱电阻为3r,“”型线框的质量为m2,其7条边的边长均为l,电阻均为r;月球表面的重力加速度为。整个运动过程中只有ab边在磁场中,线框与月球表面绝缘,不计导轨电阻和摩擦阻力。(1)求着陆装置接触到月球表面后瞬间线框ab边产生的电动势E;(2)通过画等效电路图,求着陆装置接触到月球表面后瞬间流过ab型线框的电流I0;(3)求船舱匀速运动时的速度大小v;(4)同桌小张认为在磁场上方、两导轨之间连接一个电容为C的电容器,在着陆减速过程中还可以回收部分能量,在其他条件均不变的情況下,求船舱匀速运动时的速度大小和此时电容器所带电荷量q。【答案】(1)Blv0;(2);(3);(4),【解析】(1)导体
16、切割磁感线,电动势(2)等效电路图如图并联总电阻电流(3)匀速运动时线框受到安培力根据牛顿第三定律,质量为m1的部分受力F=FA,方向竖直向上,匀速条件得(4)匀速运动时电容器不充放电,满足电容器两端电压为电荷量为8.(2021春浙江卷)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直纸面向外;速度选择器和偏转系统中的匀强电场场强大小均为E,方向分别为竖直向上和垂直
17、纸面向外。磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一边长为L的正方体,其速度选择器底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当很小时,有,。求:(1)离子通过速度选择器后的速度大小v和磁分析器选择出来离子的比荷;(2)偏转系统仅加电场时离子注入晶圆的位置,用坐标(x,y)表示;(3)偏转系统仅加磁场时离子注入晶圆的位置,用坐标(x,y)表示;(4)偏转系统同时加上电场和磁场时离子注入晶圆位置,用坐标(x,y)表示,并说明理由。【答案】(1),;(2)(,0);(3)(0,);(4)见解析【解析】(1)通过速度选择器离子的速度从磁分析器中心孔N射出离子的运动半径为由得(2)经过电场后,离子在x方向偏转的距离离开电场后,离子在x方向偏移的距离位置坐标为(,0)(3)离子进入磁场后做圆周运动半径经过磁场后,离子在y方向偏转距离离开磁场后,离子在y方向偏移距离则位置坐标为(0,)(4)注入晶圆的位置坐标为(,),电场引起的速度增量对y方向的运动不产生影响。