初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc

上传人(卖家):2023DOC 文档编号:5752844 上传时间:2023-05-06 格式:DOC 页数:44 大小:792KB
下载 相关 举报
初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc_第1页
第1页 / 共44页
初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc_第2页
第2页 / 共44页
初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc_第3页
第3页 / 共44页
初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc_第4页
第4页 / 共44页
初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、初中数学数与式提高练习与难题和培优综合题压轴题(含解析)一选择题(共10小题)1设y=|x1|+|x+1|,则下面四个结论中正确的是()Ay没有最小值B只有一个x使y取最小值C有限个x(不止一个)y取最小值D有无穷多个x使y取最小值2下列说法错误的是()A2是8的立方根B4是64的立方根C是的平方根D4是的算术平方根3用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a千克一等毛线的钱去买二等毛线,可以买()Aa千克Ba千克Ca千克Da千克4如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()ABCD5已知a,b,c分别是ABC的三边长,且满足2a4+

2、2b4+c4=2a2c2+2b2c2,则ABC是()A等腰三角形B等腰直角三角形C直角三角形D等腰三角形或直角三角形6现有一列式子:552452;55524452;5555244452则第个式子的计算结果用科学记数法可表示为()A1.11111111016B1.11111111027C1.1111111056D1.111111110177如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()ABCD8如果m为整数,那么使分式的值为整数的m的值有()A2个B3个C4个D5个9若4与可以合并,则m的值不可以是()ABCD10

3、设a为的小数部分,b为的小数部分则的值为()A+1B+1C1D+1二填空题(共12小题)11与最接近的整数是12规定用符号m表示一个实数m的整数部分,例如:=0,3.14=3按此规定的值为13若,则=14如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为15已知A=2x+1,B是多项式,在计算B+A时,某同学把B+A看成了BA,结果得x23,则B+A=16若m为正实数,且m=3,则m2=17因式分解:x2y2+6y9=18已知:x2x1=0,则x3+2x2+2002的值为19若=+,对任意自然数n都成立,则a=,b=;计算

4、:m=+=20已知三个数x,y,z满足=3,=,=则的值为21无论x取任何实数,代数式都有意义,则m的取值范围为22化简二次根式的正确结果是三解答题(共18小题)23对于任何实数,我们规定符号的意义是:=adbc按照这个规定请你计算:当x23x+1=0时,的值24分解因式:a2+4b2+c44ab2ac2+4bc2125(1)计算:(2)先化简,再求值:,其中26若实数x,y满足(x)(y)=2016(1)求x,y之间的数量关系;(2)求3x22y2+3x3y2017的值27已知x,y都是有理数,并且满足,求的值28已知+=0,求的值29已知a2+b24a2b+5=0,求的值30老师在黑板上书

5、写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:()=(1)求所捂部分化简后的结果:(2)原代数式的值能等于1吗?为什么?31阅读下列材料,解决后面两个问题:我们可以将任意三位数(其中a、b、c分别表示百位上的数字,十位上的数字和个位上的数字,且a0),显然=100a+10b+c;我们形如和的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”(1)写出任意两对“姊妹数”,并判断2331是否是一对“姊妹数”的和;(2)如果用x表示百位数字,求证:任意一对“姊妹数”的和能被37整除32若我们规定三角“”表示

6、为:abc;方框“”表示为:(xm+yn)例如:=1193(24+31)=3请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+733阅读与计算:对于任意实数a,b,规定运算的运算过程为:ab=a2+ab根据运算符号的意义,解答下列问题(1)计算(x1)(x+1);(2)当m(m+2)=(m+2)m时,求m的值34我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,即已知三角形的三边长,求它的面积用现代式子表示即为:(其中a、b、c为三角形的三边长,s为面积)而另一个文明古国古希腊也有求三角形面积的海伦公式:s=(其中p=)(1)若已知三角形

7、的三边长分别为5,7,8,试分别运用公式和公式,计算该三角形的面积s;(2)你能否由公式推导出公式?请试试35斐波那契(约11701250,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数an可表示为()n()n(1)计算第一个数a1;(2)计算第二个数a2;(3)证明连续三个数之间an1,an,an+1存在以下关系:an+1an=an1(n2);(4)写出斐波那契数列中的前8个数36问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一

8、所谓“作差法”:就是通过作差、变形,并利用差的符号确定它们的大小,即要比较代数式M、N的大小,只要作出它们的差MN,若MN0,则MN;若MN=0,则M=N;若MN0,则MN问题解决如图1,把边长为a+b(ab)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小解:由图可知:M=a2+b2,N=2abMN=a2+b22ab=(ab)2ab,(ab)20MN0MN类比应用(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且ab),试比较小丽和小颖所购买商品的平均价格的高低(2)试比较图2和图3中两个矩形

9、周长M1、N1的大小(bc)联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中bac0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由37附加题:若a=,b=,试不用将分数化小数的方法比较a、b的大小观察a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论38解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长

10、为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等(1)设A=,B=,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题39能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数例如=213时,则:21336(23+13+33=36)243(33+63=243)数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上

11、的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可)40观察并验证下列等式:13+23=(1+2)2=9,13+23+33=(1+2+3)2=36,13+23+33+43=(1+2+3+4)2=100,(1)续写等式:13+23+33+43+53=;(写出最后结果)(2)我们已经知道1+2+3+n=n(n+1),根据上述等式中所体现的规律,猜想结论:13+23+33+(n1)3+n3=;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:33+63+93+5

12、73+60313+33+53+(2n1)3(4)试对(2)中得到的结论进行证明初中数学数与式提高练习与难题和培优综合题压轴题(含解析)参考答案与试题解析一选择题(共10小题)1(2009秋和平区校级期中)设y=|x1|+|x+1|,则下面四个结论中正确的是()Ay没有最小值B只有一个x使y取最小值C有限个x(不止一个)y取最小值D有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题【解答】解:方法一:由题意得:当x1时,y=x+11x=2x;当1x1时,y=x+1+1+x=2;当x1时,y=x1+1+x=2x;故由上得当1x1时,y有最小值为2;故选D方法

13、二:由题意,y表示数轴上一点x,到1,1的距离和,这个距离和的最小值为2,此时x的范围为1x1,故选D【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论2(2016秋郑州月考)下列说法错误的是()A2是8的立方根B4是64的立方根C是的平方根D4是的算术平方根【分析】正数平方根有两个,算术平方根有一个,立方根有一个【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意故选:B【点评】本题考查立方根,平方根和算术平方根的概念3(2016秋全椒

14、县期中)用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a千克一等毛线的钱去买二等毛线,可以买()Aa千克Ba千克Ca千克Da千克【分析】先设出买1千克的一等毛线花的钱数和买1千克的二等毛线花的钱数,列出一等毛线和二等毛线的关系,再乘以a千克即可求出答案【解答】解:设买1千克的一等毛线花x元钱,买1千克的二等毛线花y元钱,根据题意得:3x=4y,则=,故买a千克一等毛线的钱可以买二等毛线a故选A【点评】此题考查了列代数式,解题的关键是认真读题,找出等量关系,列出代数式,是一道基础题4(2009江干区模拟)如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积

15、是()ABCD【分析】观察图形可知:阴影部分的面积=大圆的面积小圆的面积,大圆的直径=a,小圆的直径=,再根据圆的面积公式求解即可【解答】解:据题意可知:阴影部分的面积S=大圆的面积S1小圆的面积S2,据图可知大圆的直径=a,小圆的半径=,阴影部分的面积S=()2()2=(2abb2)故选A【点评】此题主要考查学生的观察能力,只要判断出两圆的直径,问题就迎刃而解本题涉及到圆的面积公式、整式的混合运算等知识点,是整式的运算与几何相结合的综合题5(2015湖北校级自主招生)已知a,b,c分别是ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则ABC是()A等腰三角形B等腰直角三

16、角形C直角三角形D等腰三角形或直角三角形【分析】等式两边乘以2,利用配方法得到(2a2c2)2+(2b2c2)2=0,根据非负数的性质得到2a2c2=0,2b2c2=0,则a=b,且a2+b2=c2然后根据等腰三角形和直角三角形的判定方法进行判断【解答】解:2a4+2b4+c4=2a2c2+2b2c2,4a44a2c2+c4+4b44b2c2+c4=0,(2a2c2)2+(2b2c2)2=0,2a2c2=0,2b2c2=0,c=a,c=b,a=b,且a2+b2=c2ABC为等腰直角三角形故选:B【点评】本题考查了因式分解的应用,利用完全平方公式是解决问题的关键6(2015河北模拟)现有一列式子

17、:552452;55524452;5555244452则第个式子的计算结果用科学记数法可表示为()A1.11111111016B1.11111111027C1.1111111056D1.11111111017【分析】根据题意得出一般性规律,写出第8个等式,利用平方差公式计算,将结果用科学记数法表示即可【解答】解:根据题意得:第个式子为55555555524444444452=(555555555+444444445)(555555555444444445)=1.11111111017故选D【点评】此题考查了因式分解运用公式法,以及科学记数法表示较大的数,熟练掌握平方差公式是解本题的关键7(20

18、16春雁江区期末)如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()ABCD【分析】设第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可【解答】解:设规则瓶体部分的底面积为S倒立放置时,空余部分的体积为bS,正立放置时,有墨水部分的体积是aS因此墨水的体积约占玻璃瓶容积的=,故选A【点评】考查列代数式;用墨水瓶的底面积表示出墨水的容积及空余部分的体积是解决本题的突破点8(2016秋乐亭县期末)如果m为整数,那么使分式的值

19、为整数的m的值有()A2个B3个C4个D5个【分析】分式,讨论就可以了即m+1是2的约数则可【解答】解:=1+,若原分式的值为整数,那么m+1=2,1,1或2由m+1=2得m=3;由m+1=1得m=2;由m+1=1得m=0;由m+1=2得m=1m=3,2,0,1故选C【点评】本题主要考查分式的知识点,认真审题,要把分式变形就好讨论了9(2004十堰)若4与可以合并,则m的值不可以是()ABCD【分析】根据同类二次根式的定义,把每个选项代入两个根式化简,检验化简后被开方数是否相同【解答】解:A、把代入根式分别化简:4=4=,=,故选项不符合题意;B、把代入根式化简:4=4=;=,故选项不合题意;

20、C、把代入根式化简:4=4=1;=,故选项不合题意;D、把代入根式化简:4=4=,=,故符合题意故选D【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式需要注意化简前,被开方数不同也可能是同类二次根式10(2016邯郸校级自主招生)设a为的小数部分,b为的小数部分则的值为()A+1B+1C1D+1【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后代、化简、运算、求值,即可解决问题【解答】解:=,a的小数部分=1;=,b的小数部分=2,=故选B【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二

21、次根式的运算法则来分析、判断、解答二填空题(共12小题)11(2014雨花区校级自主招生)与最接近的整数是6【分析】先利用完全平方公式将分母化简变形,再进行分母有理化即可【解答】解:=5.828,与最接近的整数是6故答案为:6【点评】本题主要考查了无理数的估算,先利用完全平方公式将分母化简,再分母有理化是解决问题的关键12(2012常德)规定用符号m表示一个实数m的整数部分,例如:=0,3.14=3按此规定的值为4【分析】求出的范围,求出+1的范围,即可求出答案【解答】解:34,3+1+14+1,4+15,+1=4,故答案为:4【点评】本题考查了估计无理数的应用,关键是确定+1的范围,题目比较

22、新颖,是一道比较好的题目13(2013德阳)若,则=6【分析】根据非负数的性质先求出a2+、b的值,再代入计算即可【解答】解:,+(b+1)2=0,a23a+1=0,b+1=0,a+=3,(a+)2=32,a2+=7;b=1=71=6故答案为:6【点评】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+的值14(2012佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4【分析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解【解答】解:设拼成的矩形的另一边长为

23、x,则4x=(m+4)2m2=(m+4+m)(m+4m),解得x=2m+4故答案为:2m+4【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键15(2012河南模拟)已知A=2x+1,B是多项式,在计算B+A时,某同学把B+A看成了BA,结果得x23,则B+A=2x3+x24x2【分析】由B除以A商为x23,且A=2x+1,利用被除数等于商乘以除数,表示出B,利用多项式乘以多项式的法则计算,确定出B,再由B+A列出关系式,去括号合并后即可得到结果【解答】解:根据题意列出B=(2x+1)(x23)=2x36x+x23=2x3+x26x3,则B+A=(2x3+x2

24、6x3)+(2x+1)=2x3+x24x2故答案为:2x3+x24x2【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键16(2011乐山)若m为正实数,且m=3,则m2=3【分析】由,得m23m1=0,即=,因为m为正实数,可得出m的值,代入,解答出即可;【解答】解:法一:由得,得m23m1=0,即=,m1=,m2=,因为m为正实数,m=,=()()=3(),=3,=;法二:由平方得:m2+2=9,m2+2=13,即(m+)2=13,又m为正实数,m+=,则=(m+)(m)=3故答案为:【点评】本题考查了完全平方公式、平方差公式,求出m

25、的值代入前,一定要把代数式分解完全,可简化计算步骤17(2002益阳)因式分解:x2y2+6y9=(xy+3)(x+y3)【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项提取1后y26y+9可运用完全平方公式,可把后三项分为一组【解答】解:x2y2+6y9,=x2(y26y+9),=x2(y3)2,=(xy+3)(x+y3)【点评】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组18(2002福州)已知:x2x1=0,则x3+2x2+2002的值为2003【分析】把2x2分解成x2与x2相加,然后把所求代数式

26、整理成用x2x表示的形式,然后代入数据计算求解即可【解答】解:x2x1=0,x2x=1,x3+2x2+2002,=x3+x2+x2+2002,=x(x2x)+x2+2002,=x+x2+2002,=1+2002,=2003故答案为:2003【点评】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要19(2015梅州)若=+,对任意自然数n都成立,则a=,b=;计算:m=+=【分析】已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值【解答】解:=+=,可得2n(a+b)+ab=

27、1,即,解得:a=,b=;m=(1+)=(1)=,故答案为:;【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键20(2013涟水县校级一模)已知三个数x,y,z满足=3,=,=则的值为6【分析】先将该题中所有分式的分子和分母颠倒位置,化简后求出 的值,从而得出代数式的值【解答】解:=3,=,=,=,=,整理得,+=,+=,+=,+得,+=+=,=,=,=6故答案为:6【点评】本题考查了分式的化简求值,将分式的分子分母颠倒位置后计算是解题的关键21(2013六盘水)无论x取任何实数,代数式都有意义,则m的取值范围为m9【分析】二次根式的被开方数是非负数,即x26x+m=(x3)29

28、+m0,所以(x3)29m通过偶次方(x3)2是非负数可求得9m0,则易求m的取值范围【解答】解:由题意,得x26x+m0,即(x3)29+m0,(x3)20,要使得(x3)29+m恒大于等于0,m90,m9,故答案为:m9【点评】考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义22(2009琼海模拟)化简二次根式的正确结果是【分析】根据二次根式的性质及定义解答【解答】解:由二次根式的性质得a3b0aba0,b0原式=a【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a0)的代数式叫做二次根式2、性质:=|a|三解答题(

29、共18小题)23(2010东莞校级一模)对于任何实数,我们规定符号的意义是:=adbc按照这个规定请你计算:当x23x+1=0时,的值【分析】应先根据所给的运算方式列式并根据平方差公式和单项式乘多项式的运算法则化简,再把已知条件整体代入求解即可【解答】解:=(x+1)(x1)3x(x2),=x213x2+6x,=2x2+6x1,x23x+1=0,x23x=1,原式=2(x23x)1=21=1【点评】本题考查了平方差公式,单项式乘多项式,弄清楚规定运算的运算方法是解题的关键24(2016秋昌江区校级期末)分解因式:a2+4b2+c44ab2ac2+4bc21【分析】先分组得到原式=(a2+4b2

30、4ab)+(2ac2+4bc2)+(c41),再根据完全平方公式,提取公因式法,平方差公式得到原式=(2ba)2+2c2(2ba)+(c2+1)(c21),再根据十字相乘法即可求解【解答】解:a2+4b2+c44ab2ac2+4bc21=(a2+4b24ab)+(2ac2+4bc2)+(c41)=(2ba)2+2c2(2ba)+(c2+1)(c21)=(2ba+c2+1)(2ba+c21)【点评】本题考查了因式分解分组分解法,本题关键是式子分组,以及熟练掌握完全平方公式,提取公因式法,平方差公式,十字相乘法的计算方法25(2013黔西南州)(1)计算:(2)先化简,再求值:,其中【分析】(1)

31、先分别根据0指数幂、负整数指数幂、有理数乘方的法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可【解答】解:(1)原式=14+1+|2|=4+1+|,=4+1+0,=5;(2)原式=当x=3时,原式=【点评】本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键26若实数x,y满足(x)(y)=2016(1)求x,y之间的数量关系;(2)求3x22y2+3x3y2017的值【分析】(1)将式子变形后,再分母有理化得式:x=y+,同理得式:x+=y,将两式相加可得结论;(2)将

32、x=y代入原式或式得:x2=2016,代入所求式子即可【解答】解:(1)(x)(y)=2016,x=y+,同理得:x+=y,+得:2x=2y,x=y,(2)把x=y代入得:x=x+,x2=2016,则3x22y2+3x3y2017,=3x22x2+3x3x2017,=x22017,=20162017,=1【点评】本题是二次根式的化简和求值,有难度,考查了二次根式的性质和分母有理化;二次根式中分母中含有根式时常运用分母有理化来解决,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式本题利用巧解将已知式变成两式,相加后得出结论27(2017春启东市月考)已知x,y都是有理数,并

33、且满足,求的值【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可【解答】解:,x,y都是有理数,x2+2y17与y+4也是有理数,解得有意义的条件是xy,取x=5,y=4,【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解或是将所求式子转化为已知值的式子,然后整体代入求解28(2017春滨海县月考)已知+=0,求的值【分析】因为一个数的算术平方根是非负数,先由非负数的和等于0,求出a、b的值,把a、b代入并求出的值【解答】解:0,0,又+=0,a,b+2=0,即a=,b=2a2+b2+7=()2+(2)2+7=5+4+4

34、+54+4+7=25=5【点评】本题考查了非负数的算式平方根和二次根式的化简解决本题的关键是根据非负数的和为零求出a、b的值初中阶段学过的非负数有:一个数的绝对值、一个数的偶次方、一个数的算术平方根29(2016海淀区校级模拟)已知a2+b24a2b+5=0,求的值【分析】由条件利用非负数的性质可先求得a、b的值,再代入计算即可【解答】解:a2+b24a2b+5=0(a2)2+(b1)2=0a=2,b=1,=7+【点评】本题主要考查二次根式的运算,利用非负数的性质求得a、b的值是解题的关键30(2016滦南县一模)老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(

35、)=(1)求所捂部分化简后的结果:(2)原代数式的值能等于1吗?为什么?【分析】(1)设所捂部分为A,根据题意得出A的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为1,求出x的值,代入代数式中的式子进行验证即可【解答】解:(1)设所捂部分为A,则A=+=+=;(2)若原代数式的值为1,则=1,即x+1=x+1,解得x=0,当x=0时,除式=0,故原代数式的值不能等于1【点评】本题考查的是分式的化简求值,在解答此类提问题时要注意x的取值要保证每一个分式有意义31(2016重庆校级模拟)阅读下列材料,解决后面两个问题:我们可以将任意三位数(其中a、b、c分别表示百位上的数字,

36、十位上的数字和个位上的数字,且a0),显然=100a+10b+c;我们形如和的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”(1)写出任意两对“姊妹数”,并判断2331是否是一对“姊妹数”的和;(2)如果用x表示百位数字,求证:任意一对“姊妹数”的和能被37整除【分析】(1)根据“姊妹数”的意义直接写出两对“姊妹数”,根据“姊妹数”的意义设出一个三位数,表示出它的“姊妹数”,求和,用2331建立方程求解,最后判断即可;(2)表示出这对“姊妹数”,并且求和,写成376(x1),判断6(x1)是整数即可【解答】解:(1

37、)根据“姊妹数”满足的条件得,和是一对姊妹数,和是一对姊妹数;假设是一对“姊妹数”的和,设这对“姊妹数”中的一个三位数的十位数字为x,个位数字为(x1),百位数字为(x+1),(x为大于1小于9的整数),这个三位数为100(x+1)+10x+x1=111x+99,另一个三位数的十位数字为x,个位数字为(x+1),百位数字为(x1),则这个三位数为100(x1)+10x+x+1=111x99,这对“姊妹数”的和为(111x+99)+(111x99)=222x=2331,x=10,不符合题意,2331不是一对“姊妹数”的和;(2)x表示一个三位数的百位数字,(x为大于2小于9的整数),根据“姊妹数

38、”的意义得,这个三位数的十位数字为(x1),个位数字为(x2),这个三位数为:100x+10(x1)+(x2)=111x12,它的“姊妹数”为:100(x2)+10(x1)+x=111x210,这对“姊妹数”的和为:(111x12)+(111x210)=222x222=222(x1)=376(x1),x为大于2小于9的整数,(x1)是整数,6(x1)是整数,376(x1)能被37整除,即:任意一对“姊妹数”的和能被37整除【点评】此题是因式分解的应用,主要考查了新定义,解一元一次方程,这出问题,解本题的关键是理解“姊妹数”的意义,并且会用它解决问题32(2017春崇仁县校级月考)若我们规定三角

39、“”表示为:abc;方框“”表示为:(xm+yn)例如:=1193(24+31)=3请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=3;(3)解方程:=6x2+7【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解【解答】解:(1)=2(3)1(1)4+31=64=故答案为:;(2)=x2+(3y)2+xk2y=x2+9y2+2kxy,代数式为完全平方式,2k=6,解得k=3故答案为:3;(3)=6x2+7,(3x2)(3x+2)(x+2)(3

40、x2)+32=6x2+7,解得x=4【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:(a+b)2=a2+2ab+b2,(ab)2=a22ab+b233(2016太原二模)阅读与计算:对于任意实数a,b,规定运算的运算过程为:ab=a2+ab根据运算符号的意义,解答下列问题(1)计算(x1)(x+1);(2)当m(m+2)=(m+2)m时,求m的值【分析】(1)根据题目中的新运算可以化简题目中的式子;(2)根据题目中的新运算可以对题目中的式子进行转化,从而可以求得m的值【解答】解:(1)ab=a2+ab,(x1)(x+1)=(x1)2+(x1)(x+1

41、)=x22x+1+x21=2x22x;(2)ab=a2+ab,m(m+2)=(m+2)m即m2+m(m+2)=(m+2)2+(m+2)m,化简,得4m+4=0,解得,m=1,即m的值是1【点评】本题考查整式的混合运算、解一元一次方程、新运算,解题的关键是明确题目中的新运算,利用新运算解答问题34(2005台州)我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,即已知三角形的三边长,求它的面积用现代式子表示即为:(其中a、b、c为三角形的三边长,s为面积)而另一个文明古国古希腊也有求三角形面积的海伦公式:s=(其中p=)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式和公式,计算该三角形的面积s;(2)你能否由公式推导出公式?请试试【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=()=,=(c+ab)(ca+b)(a+b+c)(a+bc),=(2p2a)(2p2b)2p(2p2c),=p(pa)(pb)(pc),=(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力35斐波那

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(初中数学数与式提高练习与难题和培优综合题压轴题(DOC 37页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|