初三数学圆的专项培优练习题(含答案)(DOC 8页).doc

上传人(卖家):2023DOC 文档编号:5755624 上传时间:2023-05-06 格式:DOC 页数:9 大小:168.50KB
下载 相关 举报
初三数学圆的专项培优练习题(含答案)(DOC 8页).doc_第1页
第1页 / 共9页
初三数学圆的专项培优练习题(含答案)(DOC 8页).doc_第2页
第2页 / 共9页
初三数学圆的专项培优练习题(含答案)(DOC 8页).doc_第3页
第3页 / 共9页
初三数学圆的专项培优练习题(含答案)(DOC 8页).doc_第4页
第4页 / 共9页
初三数学圆的专项培优练习题(含答案)(DOC 8页).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 初三数学圆的专项培优练习题(含答案)1如图1,已知AB是O的直径,AD切O于点A,点C是 的中点,则下列结论不成立的是( )AOCAE BEC=BC CDAE=ABE DACOE 图一 图二 图三2如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G若AF的长为2,则FG的长为( )A4 B C6 D3四个命题:三角形的一条中线能将三角形分成面积相等的两部分;有两边和其中一边的对角对应相等的两个三角形全等; 点P(1,2)关于原点的对称点坐标为(1,2); 两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则其中正确的是

2、( )A. B. C. D.4如图三,ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )A相交 B相切 C相离 D无法确定5如图四,AB为O的直径,C为O外一点,过点C作O的切线,切点为B,连结AC交O于D,C38。点E在AB右侧的半圆上运动(不与A、B重合),则AED的大小是( )A19 B38 C52 D76 图四 图五6如图五,AB为O的直径,弦CDAB于点E,若CD=,且AE:BE =1:3,则AB= 7已知AB是O的直径,ADl于点D(1)如图,当直线l与O相切于点C时,若DAC=30,求BAC的大小;(2)如图,当直线

3、l与O相交于点E、F时,若DAE=18,求BAF的大小8如图,AB为的直径,点C在O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与O的位置关系,并说明理由。9如图,AB是O的直径,AF是O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2求证:(1)四边形FADC是菱形;(2)FC是O的切线1.D2.B3.B4A5B6【解析】试题分析:如图,连接OD,设AB=4x,AE:BE =1:3,AE= x,BE=3x,。AB为O的直径,OE= x,OD=2x。又弦

4、CDAB于点E, CD=,DE=3。在RtODE中,即,解得。 AB=4x。7. 解:(1)如图,连接OC, 直线l与O相切于点C,OCl。ADl,OCAD。OCA=DAC。OA=OC,BAC=OCA。BAC=DAC=30。(2)如图,连接BF,AB是O的直径,AFB=90。BAF=90B。AEF=ADE+DAE=90+18=108。在O中,四边形ABFE是圆的内接四边形,AEF+B=180。B=180108=72。BAF=90B=18072=18。【解析】试题分析:(1)如图,首先连接OC,根据当直线l与O相切于点C,ADl于点D易证得OCAD,继而可求得BAC=DAC=30。(2)如图,连

5、接BF,由AB是O的直径,根据直径所对的圆周角是直角,可得AFB=90,由三角形外角的性质,可求得AEF的度数,又由圆的内接四边形的性质,求得B的度数,继而求得答案。8解:(1)CD是O的切线,。理由如下:连接OC,OC=OB,B=BCO。又DC=DQ,Q=DCQ。PQAB,QPB=90。B+Q=90。BCO +DCQ =90。DCO=QCB(BCO +DCQ)=18090=90。OCDC。OC是O的半径,CD是O的切线。9证明:(1)连接OC,AF是O切线,AFAB。CDAB,AFCD。CFAD,四边形FADC是平行四边形。AB是O的直径,CDAB,。设OC=x,BE=2,OE=x2。在Rt

6、OCE中,OC2=OE2+CE2,解得:x=4。OA=OC=4,OE=2。AE=6。在RtAED中,AD=CD。平行四边形FADC是菱形。(2)连接OF,四边形FADC是菱形,FA=FC。在AFO和CFO中,AFOCFO(SSS)。FCO=FAO=90,即OCFC。点C在O上,FC是O的切线。【解析】试题分析:(1)连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求得半径OC的长,然后由勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平行四边形,继而证得四边形FADC是菱形;(2)连接OF,易证得AFOCFO,继而可证得FC是O的切线。圆的相关练习题(含答案)1、已知:弦A

7、B把圆周分成1:5的两部分,这弦AB所对应的圆心角的度数为 。2、如图:在O中,AOB的度数为1200,则的长是圆周的 。3、已知:O中的半径为4cm,弦AB所对的劣弧为圆的,则弦AB的长为 cm,AB的弦心距为 cm。4、如图,在O中,ABCD,的度数为450,则COD的度数为 。 5、如图,在三角形ABC中,A=700,O截ABC的三边所得的弦长相等,则BOC=( )。 A140 B135 C130 D125 (第2题图) (第4题图) (第5题图)6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴

8、对称图形,任何一条直径都是对称轴 A0个 B1个 C2个 D3个7、已知:在直径是10的O中, 的度数是60,求弦AB的弦心距。8、已知:如图,O中,AB是直径,COAB,D是CO的中点,DEAB,求证: 9. 已知:AB交圆O于C、D,且ACBD.你认为OAOB吗?为什么? 10. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。 11. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3. 4.90度 5.D 6.A 7.2.5 8.提示:连接OE,求出角COE的度数为60度即可9.略10.100毫米11.AC=OC, OA=OB ,AE=ED

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(初三数学圆的专项培优练习题(含答案)(DOC 8页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|