1、2017年08月02日sunpeichun的初中数学组卷一选择题(共12小题)1计算(6x32x)(2x)的结果是()A3x2B3x21C3x2+1D3x212若长方形面积是2a22ab+6a,一边长为2a,则这个长方形的周长是()A6a2b+6B2a2b+6C6a2bD3ab+33计算(a+b)2(ab)2(4ab)的结果()A2abB1CabDa+b4计算(25x2y5xy2)5xy的结果等于()A5x+yB5xyC5x+1D5x15计算(14x321x2+7x)(7x)的结果是()Ax2+3xB2x2+3x1C2x2+3x+1D2x23x+16计算:(2x3y23x2y2+2xy)2xy
2、,结果是()ABCD7下列各式,计算结果错误的是()A(3a2+2a6ab)2a=a3b+1B(4a3+12a2b7a3b2)(4a2)=a3b+ab2C(4xm+25xm1)3xm2=x4D(3an+1+an+212an)(24an)=aa2+8多项式x12x6+1除以x21的余式是()A1B1Cx1Dx+19要使12x6y3z()=4x5z成立,括号中应填入()A3xy3zB3xy2zC3xy3D10若3x3kx2+4被3x1除后余5,则k的值为()A10B10C8D811计算(a2)33a2(a2)(a)2的结果是()Aa3+3a2Ba33a2Ca4+3a2Da4+a212现规定:f(x
3、)=8x512x4+6x3若M(x)=f(x)(2x2),则M(2)的值为()A2B14C60D62二填空题(共9小题)13已知一个多项式与4a2的积为12a416a3+4a2,则这个多项式为 14(3yn+1+4yn+212yn) =24yn115= 16欢欢、盈盈和贝贝各写了一个整式,欢欢写的是:2x2y,盈盈写的是:4x3y26x3y+2x4y2,贝贝写的整式恰好是盈盈写的整式除以欢欢写的整式的商,则贝贝写的式子是 17据测算,甲型H7N9病人的唾液中,一个单位体内的唾液中有甲型H7N9病毒106个,某种消毒液一滴可杀死5104个甲型H7N9病毒,医院要将一个甲型H7N9患者的一个单位体
4、积的唾液中的所有甲型H7N9病毒全部杀死,至少需要 滴这种消毒液?18观察下列各式:(x21)(x1)=x+1(x31)(x1)=x2+x+1(x41)(x1)=x3+x2+x+1(x51)(x1)=x4+x3+x2+x+1(1)能得到一般情况下(xn1)(x1)= (n为正整数);(2)根据这一结果计算:1+2+22+23+214+215= 19在一次“学数学,用少年智力开发报”的主题会上,有这样一个节目:主持人小明同学亮出了A,B,C三张卡片,上面分别写有,其中有两张卡片上的单项式相除,所得的商为2ab3c这两张卡片是 和 ,作为被除式的卡片是 (只填写卡片代号即可)20已知ABC的面积为
5、6m43a2m3+a2m2,一边长为3m2,则这条边上的高为 21已知被除式是x3+3x22,商式是x,余式是2,则除式是 三解答题(共9小题)22若(xmx2n)3x2mn与2x3是同类项,且m+5n=13,求m225n的值23计算:(1)3x(4x2y)28xy;(2)6a7b8c(2ab)(a);(3)(y37xy2+y5)(y2);(4)(15x3y+12xy2xy)(xy)24计算(1)(4x2y8x3y2)(4x2y);(2)(5x2y34x3y2+6x)(6x);(3);(4)x(34x)+2x2(x1)(2x)25小明在做一个多项式除以的题时,由于粗心误以为是乘以,结果是8a4
6、b4a3+2a2,你能知道正确的结果是多少吗?26王老师在课堂上给同学们出了一道猜数游戏题,规则:同学们在心里想好一个除0以外的数,然后按以下顺序进行计算:(1)把这个数加上2以后再平方;(2)然后再减去4;(3)再除以所想的那个数,得到一个商,最后把你所得的商告诉老师,老师立即知道你猜想的数,能说出其中的奥妙吗?27计算:(1)98272(3)21(2)(a2b)(a+2b)+4b(b2a)2a28(1)已知多项式2x34x1除以一个多项式A,得商式为x,余式为x1,求这个多项式(2)请按下列程序计算,把答案写在表格内,然后看看有什么规律,想想为什么会有这样的规律?填写表格内的空格:n输入3
7、21输出答案你发现的规律是: 请用符号语言论证你的发现29已知多项式2x34x21除以一个多项式A,得商式为2x,余式为x1,求这个多项式30先化简,再求值:(2x+y)(xy)(x+y)2(4x2y28y4)(2y)2,其中x=2,y=42017年08月02日sunpeichun的初中数学组卷参考答案与试题解析一选择题(共12小题)1(2017泉州模拟)计算(6x32x)(2x)的结果是()A3x2B3x21C3x2+1D3x21【分析】根据整式的除法法则即可求出答案【解答】解:原式=3x2+1故选(C)【点评】本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型2(20
8、17春槐荫区期末)若长方形面积是2a22ab+6a,一边长为2a,则这个长方形的周长是()A6a2b+6B2a2b+6C6a2bD3ab+3【分析】根据长方形面积除以一边求出另一边,进而求出长方形的周长即可【解答】解:根据题意得:(2a22ab+6a)(2a)=ab+3,则这个长方形的周长为2(2a+ab+3)=6a2b+6,故选A【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键3(2017春东平县期中)计算(a+b)2(ab)2(4ab)的结果()A2abB1CabDa+b【分析】直接利用完全平方公式化简进而利用整式除法运算法则求出答案【解答】解:(a+b)2(ab)2(4ab)
9、=(a2+b2+2aba2b2+2ab)4ab=4ab4ab=1故选:B【点评】此题主要考查了整式除法运算以及完全平方公式,正确化简完全平方公式是解题关键4(2017春武侯区校级月考)计算(25x2y5xy2)5xy的结果等于()A5x+yB5xyC5x+1D5x1【分析】直接利用整式的除法运算法则得出即可【解答】解:(25x2y5xy2)5xy=25x2y5xy5xy25xy=5xy故选:B【点评】此题主要考查了多项式除以单项式,正确掌握运算法则是解题关键5(2017春遂宁期中)计算(14x321x2+7x)(7x)的结果是()Ax2+3xB2x2+3x1C2x2+3x+1D2x23x+1【
10、分析】原式利用多项式除以单项式法则计算即可得到结果【解答】解:原式=2x2+3x1,故选B【点评】此题考查了整式的除法,熟练掌握多项式除以单项式法则是解本题的关键6计算:(2x3y23x2y2+2xy)2xy,结果是()ABCD【分析】利用多项式除以单项式的,首先转化为单项式除以单项式,系数和相同字母分别相除,再把所得的结果合并起来即可【解答】解:原式=2x3y2(2xy)3x2y2(2xy)+2xy(2xy)=x2yxy+1故选:C【点评】本题主要考查多项式除以单项式运算,注意问题的转化、系数和相同字母分别相除7下列各式,计算结果错误的是()A(3a2+2a6ab)2a=a3b+1B(4a3
11、+12a2b7a3b2)(4a2)=a3b+ab2C(4xm+25xm1)3xm2=x4D(3an+1+an+212an)(24an)=aa2+【分析】直接利用整式的除法的性质求解即可求得答案,注意掌握排除法在选择题中的应用【解答】解:A、(3a2+2a6ab)2a=a3b+1,故本选项正确;B、(4a3+12a2b7a3b2)(4a2)=a3b+ab2,故本选项正确;C、(4xm+25xm1)3xm2=x4x,故本选项错误;D、(3an+1+an+212an)(24an)=aa2+,故本选项正确故选C【点评】此题考查了整式的除法此题难度不大,注意掌握指数与符号的变化实际此题的关键8多项式x1
12、2x6+1除以x21的余式是()A1B1Cx1Dx+1【分析】设f(x)=x12x6+1除以x21的余式是ax+b,则说明f(x)(ax+b)能被(x21)整除,从而x21=0,求出的两个x的值也能使f(x)(ax+b)=0,把x的值代入可得关于a、b的方程组,解即可【解答】解:设f(x)=x12x6+1除以x21的余式是ax+b,则f(x)(ax+b)可被x21整除,又x21=(x+1)(x1),即当x=1或x=1时,f(x)(ax+b)=0,即f(1)=a+b,f(1)=a+b,由于f(x)=x12x6+1,f(1)=11+1=1,f(1)=11+1=1,a+b=1,a+b=1,解得a=0
13、,b=1,多项式x12x6+1除以x21的余式是1【点评】本题考查的是多项式除以多项式,注意理解整除的含义,比如A被B整除,另外一层意思也就是说,B是A的公因式,使公因式B等于0的值,必是A的一个解9要使12x6y3z()=4x5z成立,括号中应填入()A3xy3zB3xy2zC3xy3D【分析】将除法转化为乘法进行运算即可【解答】解:=12x6y3z4x5z=3xy3,故选C【点评】本题考查了整式的除法,解题的关键是将除法转化为乘法进行运算10若3x3kx2+4被3x1除后余5,则k的值为()A10B10C8D8【分析】有被除式及余数,假设出商的值,利用被除式减去余数再除以商即可得到除式【解
14、答】解:3x3kx2+4被3x1除后余5,说明3x3kx21可被3x1整除,3x1为3x3kx21的一个因式,当3x1=0,即x=时,3x3kx21=0,即3k1=0,解得k=8,故选:C【点评】此题主要考查了多项式除单项式,理清被除式、除式、商、余数四者之间的关系是解题的关键11计算(a2)33a2(a2)(a)2的结果是()Aa3+3a2Ba33a2Ca4+3a2Da4+a2【分析】先把这个多项式的每一项分别除以单项式,再把所得的商相加【解答】解:原式=(a6+3a4)a2=a3+3a2故选A【点评】本题考查多项式除以单项式运算多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后
15、再把所得的商相加12(2014春莱山区期中)现规定:f(x)=8x512x4+6x3若M(x)=f(x)(2x2),则M(2)的值为()A2B14C60D62【分析】先利用整式的除法计算,再将x=2代入所求代数式即可【解答】解:因为M(x)=f(x)(2x2),所以可得M(x)=(8x512x4+6x3)(2x2)=4x3+6x23x,把x=2代入4x3+6x23x=4(8)+643(2)=62,故选D【点评】此题考查整式的除法,关键是根据整式的除法法则计算,再代数式求值二填空题(共9小题)13已知一个多项式与4a2的积为12a416a3+4a2,则这个多项式为3a2+4a1【分析】由一个多项
16、式与4a2的积为12a416a3+4a2,可得这个多项式为:(12a416a3+4a2)(4a2),然后利用整式除法运算法则求解,即可求得答案【解答】解:一个多项式与4a2的积为12a416a3+4a2,这个多项式为:(12a416a3+4a2)(4a2)=3a2+4a1故答案为:3a2+4a1【点评】此题考查了整式的除法此题难度不大,注意掌握运算法则14(3yn+1+4yn+212yn)(y2y3+y)=24yn1【分析】根据除数=被除数商,可得所求的整式=(3yn+1+4yn+212yn)(24yn1),继而求得答案【解答】解:(3yn+1+4yn+212yn)(24yn1)=y2y3+y
17、故答案为:(y2y3+y)【点评】此题考查了整式的除法此题难度不大,注意掌握指数与符号的变化实际此题的关键15=m3+m+1【分析】根据多项式除以单项式法则计算即可得到结果【解答】解:原式=m3+m+1故答案为:m3+m+1【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键16欢欢、盈盈和贝贝各写了一个整式,欢欢写的是:2x2y,盈盈写的是:4x3y26x3y+2x4y2,贝贝写的整式恰好是盈盈写的整式除以欢欢写的整式的商,则贝贝写的式子是2xy3x+x2y【分析】根据题意列出算式,利用多项式除以单项式法则计算即可【解答】解:根据题意得:(4x3y26x3y+2x4y2)2x2y=2
18、xy3x+x2y,故答案为:2xy3x+x2y【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键17据测算,甲型H7N9病人的唾液中,一个单位体内的唾液中有甲型H7N9病毒106个,某种消毒液一滴可杀死5104个甲型H7N9病毒,医院要将一个甲型H7N9患者的一个单位体积的唾液中的所有甲型H7N9病毒全部杀死,至少需要20滴这种消毒液?【分析】根据一个单位体内的唾液中有甲型H7N9病毒106个,某种消毒液一滴可杀死5104个甲型H7N9病毒,列出算式,计算即可【解答】解:根据题意得:106(5104)=0.2102=20(滴),则至少需要20滴这种消毒液故答案为:20【点评】此题考查
19、了整式的除法,以及科学记数法,熟练掌握运算法则是解本题的关键18观察下列各式:(x21)(x1)=x+1(x31)(x1)=x2+x+1(x41)(x1)=x3+x2+x+1(x51)(x1)=x4+x3+x2+x+1(1)能得到一般情况下(xn1)(x1)=xn1+x3+x2+x+1(n为正整数);(2)根据这一结果计算:1+2+22+23+214+215=2161【分析】(1)根据已知得出式子变化规律进而求出即可;(2)根据已知得出式子变化规律进而求出即可【解答】解:(1)(x21)(x1)=x+1(x31)(x1)=x2+x+1(x41)(x1)=x3+x2+x+1(x51)(x1)=x
20、4+x3+x2+x+1(xn1)(x1)=xn1+x3+x2+x+1;故答案为:xn1+x3+x2+x+1;(2)1+2+22+23+214+215=(2161)(21)=2161故答案为:2161【点评】此题主要考查了数字变化规律,根据题意得出式子中变化规律是解题关键19(2010春招远市期中)在一次“学数学,用少年智力开发报”的主题会上,有这样一个节目:主持人小明同学亮出了A,B,C三张卡片,上面分别写有,其中有两张卡片上的单项式相除,所得的商为2ab3c这两张卡片是C和A,作为被除式的卡片是C (只填写卡片代号即可)【分析】根据整式的除法法则计算:系数相除;同底数幂相除;对被除式里含有的
21、字母直接作为商的一个因式【解答】解:32a4b7c316a3b4c2=2ab3c故答案为C和A,其中作为被除式的卡片是C故答案为C【点评】本题考查了整式的除法法则,牢记法则是关键20(2010秋偃师市校级月考)已知ABC的面积为6m43a2m3+a2m2,一边长为3m2,则这条边上的高为4m22a2m+a2【分析】由题意得ABC一边上的高为2(6m43a2m3+a2m2)(3m2),然后利用多项式除以单项式的法则即可求出结果S=ah【解答】解:2(6m43a2m3+a2m2)(3m2)=(12m46a2m3+2a2m2)(3m2)=4m22a2m+a2故答案为:4m22a2m+a2【点评】本题
22、考查多项式除以单项式多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加21(2012春蚌埠期中)已知被除式是x3+3x22,商式是x,余式是2,则除式是x2+3x【分析】利用(被除式余式)商式即可求得除式,对式子进行化简即可求解【解答】解:(x3+3x22)(2)x=(x3+3x2)x=x2+3x故答案是:x2+3x【点评】本题考查了整式的除法,正确理解被除式,除式,商,余式之间的关系是关键三解答题(共9小题)22若(xmx2n)3x2mn与2x3是同类项,且m+5n=13,求m225n的值【分析】根据同底数幂相除,底数不变指数相减,对(xmx2n)3x2mn化简,
23、由同类项的定义可得m5n=3,结合m+5n=13,可得答案【解答】解:(xmx2n)3x2mn=(xm2n)3x2mn=x3m6nx2mn=xm5n,因它与2x3为同类项,所以m5n=3,又m+5n=13,m=8,n=1,所以m225n=822512=39【点评】本题考查了整式的除法,解决本题时注意首先利用同类项和整式的除法的定义求得m和n的值23计算:(1)3x(4x2y)28xy;(2)6a7b8c(2ab)(a);(3)(y37xy2+y5)(y2);(4)(15x3y+12xy2xy)(xy)【分析】(1)根据单项式除单项式的法则求解;(2)根据单项式除单项式的法则求解;(3)根据多项
24、式除单项式的法则求解;(4)根据多项式除单项式的法则求解【解答】解:(1)原式=48x5y28xy=6x4y;(2)原式=3a6b7ca=a7b7c;(3)原式=yx+y3;(4)原式=15x212y+1【点评】本题考查了整式的除法,解答本题的关键是掌握单项式除单项式的法则以及多项式除单项式的法则24计算(1)(4x2y8x3y2)(4x2y);(2)(5x2y34x3y2+6x)(6x);(3);(4)x(34x)+2x2(x1)(2x)【分析】原式各项利用多项式除以单项式法则计算即可得到结果【解答】解:(1)原式=12xy;(2)原式=xy3x2y2+1;(3)原式=4a2+8ab12b2
25、;(4)原式=(3x6x2+2x3)(2x)=+3x2x2【点评】此题考查了整式的除法,熟练掌握多项式除以单项式法则是解本题的关键25小明在做一个多项式除以的题时,由于粗心误以为是乘以,结果是8a4b4a3+2a2,你能知道正确的结果是多少吗?【分析】根据错误的解法用得出的结果除以a,得出要求的式子,再根据得出的式子除以即可得出答案【解答】解:根据题意得:原多项式=(8a4b4a3+2a2)=16a3b8a2+4a,则正确的结果是(16a3b8a2+4a)a=32a2b16a+8【点评】此题考查了整式的除法,解题的关键是根据错误的计算和结果可以求出这个式子,再按正确的计算即可26王老师在课堂上
26、给同学们出了一道猜数游戏题,规则:同学们在心里想好一个除0以外的数,然后按以下顺序进行计算:(1)把这个数加上2以后再平方;(2)然后再减去4;(3)再除以所想的那个数,得到一个商,最后把你所得的商告诉老师,老师立即知道你猜想的数,能说出其中的奥妙吗?【分析】根据计算步骤得出表达式,求出结果后即可得出其中的奥妙【解答】解:设此数为a,由题意得,(a+2)24a=(a2+4a)a=a+4;可以看出商减去4就是学生想的数【点评】本题考查了整式的除法,以游戏为依托进行考察,比较新颖,是一道比较好的题目27(2017春永新县期末)计算:(1)98272(3)21(2)(a2b)(a+2b)+4b(b2
27、a)2a【分析】(1)原式变形后,利用同底数幂的乘除法则计算即可得到结果;(2)原式中括号中利用平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算即可得到结果【解答】解:(1)原式=31636(3)21=3;(2)原式=(a24b2+4b28ab)2a=(a28ab)2a=a4b【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键28(2016春龙泉驿区期中)(1)已知多项式2x34x1除以一个多项式A,得商式为x,余式为x1,求这个多项式(2)请按下列程序计算,把答案写在表格内,然后看看有什么规律,想想为什么会有这样的规律?填写表格内的空格:n输入
28、321输出答案你发现的规律是:输入什么数,输出时仍为原来的数请用符号语言论证你的发现【分析】(1)本题需先根据已知条件,列出式子,再根据整式的除法法则及运算顺序即可求出结果;(2)将3、2、1按照程序依次计算可得结果;由表格即可得;由程序计算的顺序列出算式,再根据整式的除法法则及运算顺序即可求出结果【解答】解:据题意得:A=2x34x21(x1)x=(2x34x21x+1)x=2x24x1;(2)表格如下: n输入 3 2 1 输出答案321答案为:输入什么数,输出时仍为原来的数;验证:(n2+n)n1=n+11=n【点评】本题主要考查了整式的除法,在解题时要根据整式的除法法则即运算顺序是本题
29、的关键29(2014春锦江区校级期中)已知多项式2x34x21除以一个多项式A,得商式为2x,余式为x1,求这个多项式【分析】根据“除式=(被除式余式)商”列式,再利用多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加,计算即可【解答】解:A=(2x34x21)(x1)(2x),=(2x34x2x)(2x),=x22x【点评】此题主要考查了多项式除以单项式的法则,弄清被除式、除式、商、余式四者之间的关系是解题的关键30(2015秋乐至县期中)先化简,再求值:(2x+y)(xy)(x+y)2(4x2y28y4)(2y)2,其中x=2,y=4【分析】先算乘法和乘法,算除法,合并同类项,最后代入求出即可【解答】解:(2x+y)(xy)(x+y)2(4x2y28y4)(2y)2=2x22xy+xyy2x22xyy2(4x2y28y4)4y2=x23xy2y2x2+2y2=3xy,当x=2,y=4时,原式=32(4)=24【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键