1、极值点偏移的问题专题6.设函数,其图象与轴交于,两点,且(1)求的取值范围;(2)证明:(为函数的导函数);(3)设点C在函数的图象上,且ABC为等腰直角三角形,记,求的值【解】(1)若,则,则函数是单调增函数,这与题设矛盾所以,令,则当时,是单调减函数;时,是单调增函数;于是当时,取得极小值 因为函数的图象与轴交于两点,(x1x2),所以,即.此时,存在;存在,又由在及上的单调性及曲线在R上不间断,可知为所求取值范围. (2)因为 两式相减得 记,则,设,则,所以是单调减函数,则有,而,所以又是单调增函数,且所以 (3)依题意有,则于是,在等腰三角形ABC中,显然C = 90,所以,即,由直
2、角三角形斜边的中线性质,可知,所以,即,所以,即 因为,则,又,所以, 即,所以 7.已知函数()求函数的单调区间和极值;()已知函数的图象与函数的图象关于直线对称,证明当时,()如果,且,证明()解:f令f(x)=0,解得x=1当x变化时,f(x),f(x)的变化情况如下表X()1()f(x)+0-f(x)极大值所以f(x)在()内是增函数,在()内是减函数。函数f(x)在x=1处取得极大值f(1)且f(1)=()证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)令F(x)=f(x)-g(x),即于是当x1时,2x-20,从而(x)0,从而函数F(x)在1,+)是增函数。又F(1
3、)=F(x)F(1)=0,即f(x)g(x).)证明:(1)若(2)若根据(1)(2)得由()可知,,则=,所以,从而.因为,所以,又由()可知函数f(x)在区间(-,1)内事增函数,所以,即2.8. 已知函数 (12分)(I)讨论f(x)的单调性;(II)设a0,证明:当时,;(III)若函数y= f(x)的图像与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:f(x0)0时f(x) f(x)即可。10.已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上不单调,求的取值范围;(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.证明:解(1) 函数在,1是增函数,在1,2是减函数,3分所以 4分(2)因为,所以, 5分因为在区间上不单调,所以在(0,3)上有实数解,且无重根,由,有=,() 6分又当时,有重根, 7分综上 8分(3),又有两个实根,两式相减,得, , 10分于是 11分要证:,只需证:只需证:(*) 12分令,(*)化为 ,只证即可 在(0,1)上单调递增,即14分