1、2.5等比数列的前n项和第1课时等比数列的前n项和学 习 目 标核 心 素 养1.掌握等比数列的前n项和公式及其应用(重点).2.会用错位相减法求数列的和(重点).3.能运用等比数列的前n项和公式解决一些简单的实际问题1.通过等比数列前n项和的实际应用,培养数学建模素养.2.借助等比数列基本量的计算及错位相减法的应用,培养数学运算素养.1等比数列前n项和公式思考:类比等差数列前n项和是关于n的二次型函数,如何从函数的角度理解等比数列前n项和Sn?提示可把等比数列前n项和Sn理解为关于n的指数型函数2错位相减法(1)推导等比数列前n项和的方法一般地,等比数列an的前n项和可写为:Sna1a1qa
2、1q2a1qn1,用公比q乘的两边,可得qSna1qa1q2a1qn1a1qn,由,得(1q)Sna1a1qn,整理得Sn(q1)(2)我们把上述方法叫错位相减法,一般适用于数列anbn前n项和的求解,其中an为等差数列,bn为等比数列,且q1.思考:等比数列的前n项和公式的推导还有其他的方法吗?提示根据等比数列的定义,有:q,再由合比定理,则得q,即q,进而可求Sn.1等比数列1,x,x2,x3,(x0)的前n项和Sn为()ABCDC当x1时,数列为常数列,又a11,所以Snn.当x1时,qx,Sn.2等比数列an中,a11,q2,则S5_31S531.3数列,的前10项的和S10_S10,
3、则S10.两式相减得,S10,所以S10.4某厂去年产值为a,计划在5年内每年比上一年的产值增长10%,从今年起5年内,该厂的总产值为_11(1.151)a去年产值为a,从今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a.所以1.1a1.12a1.13a1.14a1.15aa11(1.151)a.等比数列基本量的运算【例1】在等比数列an中,(1)S230,S3155,求Sn;(2)a1a310,a4a6,求S5;(3)a1an66,a2an1128,Sn126,求q.解(1)由题意知解得或从而Sn5n1或Sn.(2)法一:由题意知解得从而S5.法二:由(a
4、1a3)q3a4a6,得q3,从而q.又a1a3a1(1q2)10,所以a18,从而S5.(3)因为a2an1a1an128,所以a1,an是方程x266x1280的两根从而或又Sn126,所以q为2或.1在等比数列 an的五个量a1,q,an,n,Sn中,已知其中的三个量,通过列方程组,就能求出另外两个量,这是方程思想与整体思想在数列中的具体应用2在解决与前n项和有关的问题时,首先要对公比q1或q1进行判断,若两种情况都有可能,则要分类讨论1在等比数列an中(1)若a1,an16,Sn11,求n和q;(2)已知S41,S817,求an.解(1)由Sn得11,q2,又由ana1qn1得16(2
5、)n1,n5.(2)若q1,则S82S4,不合题意,q1,S41,S817,两式相除得171q4,q2或q2,a1或a1,an2n1或(2)n1.等比数列前n项和公式的实际应用【例2】借贷10 000元,以月利率为1%,每月以复利计息借贷,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元?(1.0161.061,1.0151.051)思路探究:解决等额还贷问题关键要明白以下两点:(1)所谓复利计息,即把上期的本利和作为下一期本金,在计算时每一期本金的数额是不同的,复利的计算公式为SP(1r)n,其中P代表本金,n代表存期,r代表利率,S代表本利和(2)从还贷之月起,每月还
6、贷金额是构成等比数列还是等差数列,首项是什么,公比或公差是多少解法一:设每个月还贷a元,第1个月后欠款为a0元,以后第n个月还贷a元后,还剩下欠款an元(1n6),则a010 000,a11.01a0a,a21.01a1a1.012a0(11.01)a,a61.01a5a1.016a011.011.015a.由题意,可知a60,即1.016a011.011.015a0,a.1.0161.061,a1 739.故每月应支付1 739元法二:一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S1104(10.01)6104(1.01)6(元)另一方面,设每个月还贷a元,分6
7、个月还清,到贷款还清时,其本利和为S2a(10.01)5a(10.01)4aa1.0161102(元)由S1S2,得a.以下解法同法一,得a1 739,故每月应支付1 739元解数列应用题的具体方法步骤(1)认真审题,准确理解题意,达到如下要求:明确问题属于哪类应用问题,即明确是等差数列问题还是等比数列问题,还是含有递推关系的数列问题?是求an,还是求Sn?特别要注意准确弄清项数是多少弄清题目中主要的已知事项(2)抓住数量关系,联想数学知识和数学方法,恰当引入参数变量,将文字语言翻译成数学语言,将数量关系用数学式子表达(3)将实际问题抽象为数学问题,将已知与所求联系起来,列出满足题意的数学关系
8、式2一个热气球在第一分钟上升了25 m的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%. 这个热气球上升的高度能超过125 m吗?解用an表示热气球在第n分钟上升的高度,由题意,得an1an,因此,数列an是首项a125,公比q的等比数列热气球在前n分钟内上升的总高度为Sna1a2an1251()n0,a1q21,即a31,S371,6q2q10,解得q,a14,S5.4在等比数列an中,已知a1a2a36,a2a3a43,则a3a4a5a6a7等于()AB CDAq,由a1a2a36,且q,得a18,可得a2a1q84,a3a4a5a6a7S7a1a2a1a28(4
9、).5已知an是首项为1的等比数列,Sn是其前n项和,且9S3S6,则数列的前5项和等于()A或5B或5CDC设数列an的公比为q,显然q1,由已知得,解得q2(q1舍去),数列是以1为首项,为公比的等比数列,前5项和为.二、填空题6等比数列an的各项均为实数,其前n项和为Sn.已知S3,S6,则a8_32设an的首项为a1,公比为q,则解得所以a8272532.7某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(nN*)等于_6由题意知,第n天植树2n棵,则前n天共植树2222n(2n12)棵,令2n12100,则2n1102,又2664
10、,27128,且2n1单调递增,所以n6,即n的最小值为6.8在数列an中,a12,an12an,Sn为an的前n项和若Sn126,则n_6a12,an12an,数列an是首项为2,公比为2的等比数列,又Sn126,126,n6.三、解答题9等比数列an的前n项和为Sn,已知S1,S3,S2成等差数列(1)求an的公比q;(2)若a1a33,求Sn.解(1)依题意有a1(a1a1q)2(a1a1qa1q2),由于a10,故2q2q0.又q0,从而q.(2)由已知可得a1a13,故a14.从而Sn.10已知数列an和bn满足a12,b11,an12an(nN*),b1b2b3bnbn11(nN*
11、)(1)求an与bn;(2)记数列anbn的前n项和为Tn,求Tn.解(1)由a12,an12an,得an2n(nN*)由题意知:当n1时,b1b21,故b22.当n2时,bnbn1bn.整理得,所以bnn(nN*)(2)由(1)知anbnn2n,因此Tn2222323n2n,2Tn22223324n2n1,所以Tn2Tn222232nn2n1.故Tn(n1)2n12(nN*)能力提升练1在等比数列an中,a1a2an2n1(nN*),则aaa等于()A(2n1)2B(2n1)2C4n1D(4n1)Da1a2an2n1,即Sn2n1,则Sn12n11(n2),则an2n2n12n1(n2),又
12、a11也符合上式,所以an2n1,a4n1,所以aaa(4n1)2如图所示,作边长为3的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆如此下去,则前n个内切圆的面积和为()ABC2D3B根据条件,第一个内切圆的半径为3,面积为,第二个内切圆的半径为,面积为,这些内切圆的面积组成一个等比数列,首项为,公比为,故面积之和为.3一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是_192设最下面一层灯的盏数为a1,则公比q,n7,由381,解得a1192.4等差数列an中,公差d0,aa1a4,若a1,a3,ak1,ak2,akn,成等比数列,则kn_3n1由题意得(a1d)2a1(a13d),a1d,q3.akn9a13n1kna1,kn93n13n1.5设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q.已知b1a1,b22,qd,S10100.(1)求数列an,bn的通项公式;(2)当d1时,记cn,求数列cn的前n项和Tn.解(1)由题意有即解得或故或(2)由d1,知an2n1,bn2n1,故cn,于是Tn1,Tn.可得Tn23,故Tn6.