1、基本概念:(1) 面力、体力与应力、应变、位移的概念及正负号规定(2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。(3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。(4) 平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,由切应力互等,这样只剩下平行于xy面的三个平面应力分量,即,所以这种问题称为平面应力问题。设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体
2、力也平行于横截面且不沿长度变化,由对称性可知,根据切应力互等,。由胡克定律,又由于z方向的位移w处处为零,即。因此,只剩下平行于xy面的三个应变分量,即,所以这种问题习惯上称为平面应变问题。(5) 一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。(6) 圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7) 轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有
3、的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。一、 平衡微分方程:(1) 平面问题的平衡微分方程;(记)(2) 平面问题的平衡微分方程(极坐标);1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。二、 几何方程;(1) 平面问题的几何方程;(记)(2) 平面问题的几何方程(极坐标);1、几何方程反映了位移和应变之间的关系。2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。(刚体位移)三、 物理方程;(1) 平面应力的物理方程;(记)(2) 平面应变的物理方程;(3)
4、极坐标的物理方程(平面应力);(4) 极坐标的物理方程(平面应变);四、 边界条件;(1) 几何边界条件;平面问题: 在上;(2) 应力边界条件;平面问题:(记)(3) 接触条件;光滑接触: n为接触面的法线方向非光滑接触: n为接触面的法线方向(4) 位移单值条件;(5) 对称性条件:在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。一概念1弹性力学,也称弹性理论,是固体力学学科的一个分支。 2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、
5、断裂力学、复合材料力学。3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。.4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛5.弹性力学基本方法:差分法、变分法、有限元法、实验法.6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学 三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。8.几何方程反映的是形变分量与位移分量之间的关系。9.物理方程反映的是应力分量与形变分量之间的关系。10.平衡微分方程反映
6、的是应力分量与体力分量之间的关系。11当物体的位移分量完全确定时,形变分量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。13圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。14. 圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生
7、显著的应力,而远处的应力可以不计。这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。15.求解平面问题的两种基本方法:位移法、应力法。16.弹性力学的基本原理:解的唯一性原理解的叠加原理圣维南原理。会推导两种平衡微分方程17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数 (2)由式(2-24),根据应力函数求得应力分量 (3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。(或
8、者根据已知面力确定应力函数或应力分量表达式中的待定系数18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式(2)按式(2-24),由应力推出应力函数f的一般形式(含待定函数项);(3)将应力函数f代入相容方程进行校核,进而求得应力函数f的具体表达形式;(4)将应力函数f代入式(2-24),由应力函数求得应力分量(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全填空5.平面问题的应力边界条件为计算理解7.圣维南原理的三个积分式如果给出单位宽度上面力的主矢量和主矩
9、,则三个积分边界条件变为8.艾里应力函数计算一、单项选择题(按题意将正确答案的编号填在括弧中,每小题2分,共10分)1、弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。A相容方程 B近似方法 C边界条件 D附加假定2、根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。A几何上等效 B静力上等效 C平衡 D任意3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A平衡方程、几何方程、物理方程完全相同 B
10、平衡方程、几何方程相同,物理方程不同 C平衡方程、物理方程相同,几何方程不同D平衡方程相同,物理方程、几何方程不同在研究方法方面:材力考虑有限体V的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。4、常体力情况下,用应力函数表示的相容方程形式为,6、设有函数,(1)判断该函数可否作为应力函数?(3分)(2)选择该函数为应力函数时,考察其在图中所示的矩形板和坐标系(见题九图)中能解决什么问题(l h)。(15分)题九图解: (1)将代入相容方程,显然满足。因此,该函数可以作为应力函数。(2)应力分量的表达式:考察边界条件:在主要边界yh/2上,应精确满足应力边界条件在次要边界x0上,
11、应用圣维南原理,可列出三个积分的应力边界条件:在次要边界xl上,应用圣维南原理,可列出三个积分的应力边界条件:对于如图所示的矩形板和坐标系,结合边界上面力与应力的关系,当板内发生上述应力时,由主边界和次边界上的应力边界条件可知,左边、下边无面力;而上边界上受有向下的均布压力;右边界上有按线性变化的水平面力合成为一力偶和铅直面力。所以,能够解决右端为固定端约束的悬臂梁在上边界受均布荷载q的问题。 2009 2010学年第 二 学期期末考试试卷 ( A )卷一 名词解释(共10分,每小题5分)1. 弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。2. 圣维南原理:如果把
12、物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 应力符号的规定为: 正面正向、负面负向为正,反之为负 。4. 弹性力学中,正面是指 外法向方向沿坐标轴正向 的面,负面是指 外法向方向沿坐标轴负向 的面 。1. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿
13、板厚均匀分布,只有平面应力分量,存在,且仅为x,y的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量,存在,且仅为x,y的函数。2. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数求解,应力函数必须满足哪些条件?答:(1)相容方程: (2)应力边界条件(假定全部为应力边界条件,): (3)若为多连体,还须满足位移单值条件。二 问答题(36)1. (12分)试列出图5-1的全部边界条件,在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。(板厚) 图5-1解:在主要边界上,应精确满足下列边
14、界条件:,; ,在次要边界上,应用圣维南原理列出三个积分的应力边界条件,当板厚时,在次要边界上,有位移边界条件:,。这两个位移边界条件可以改用三个积分的应力边界条件代替:,2. (10分)试考察应力函数,能满足相容方程,并求出应力分量(不计体力),画出图5-2所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。图5-2解:(1)相容条件:将代入相容方程,显然满足。(2)应力分量表达式:,(3)边界条件:在主要边界上,即上下边,面力为,在次要边界上,面力的主失和主矩为 弹性体边界上的面力分布及在次要边界上面力的主失量和主矩如解图所示。3. (14分)设有矩形截面的长竖柱,密度为,在
15、一边侧面上受均布剪力q, 如图5-3所示,试求应力分量。(提示:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量 )图 5-3解:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量,(1) 假设应力分量的函数形式。(2) 推求应力函数的形式。此时,体力分量为。将代入应力公式有对积分,得, (a) 。 (b)其中,都是的待定函数。(3)由相容方程求解应力函数。将式(b)代入相容方程,得这是y的一次方程,相容方程要求它有无数多的根(全部竖柱内
16、的y值都应该满足),可见它的系数和自由项都必须等于零。,两个方程要求, (c)中的常数项,中的一次和常数项已被略去,因为这三项在的表达式中成为y的一次和常数项,不影响应力分量。得应力函数 (d)(4)由应力函数求应力分量。, (e), (f). (g)(5) 考察边界条件。利用边界条件确定待定系数先来考虑左右两边的主要边界条件:,。将应力分量式(e)和(g)代入,这些边界条件要求:,自然满足; (h) (i)由(h)(i) 得 (j) 考察次要边界的边界条件,应用圣维南原理,三个积分的应力边界条件为; 得 , 得 (k)由(h)(j)(k)得 , 将所得A、B、C、D、E代入式(e)(f)(g
17、)得应力分量为:, 填空题(每个1分,共101=10分)。1弹性力学的研究方法是在弹性区域内部,考虑静力学、几何学和物理学方面建立三套方程,即 方程、 方程以及 方程;在弹性体的边界上,还要建立边界条件,即 边界条件和 边界条件。2弹性力学基本假定包括 假定、 假定、 假定、 假定和 假定。1平衡微分 几何 物理 应力 位移 2连续 均匀 各向同性 完全弹性 小变形一、 单项选择题(每个2分,共52=10分)。1. 关于弹性力学的正确认识是A 。A. 弹性力学在工程结构设计中的作用日益重要。B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设。C. 任何弹性变形材料
18、都是弹性力学的研究对象。D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。2. 所谓“完全弹性体”是指B 。A. 材料应力应变关系满足胡克定律。B. 材料的应力应变关系与加载时间历史无关。C. 本构关系为非线性弹性关系。D. 应力应变关系满足线性弹性关系。3. 所谓“应力状态”是指B 。A. 斜截面应力矢量与横截面应力矢量不同。B. 一点不同截面的应力随着截面方位变化而改变。C. 3个主应力作用平面相互垂直。D. 不同截面的应力不同,因此应力矢量是不可确定的。4弹性力学的基本未知量没有C 。 A. 应变分量。B. 位移分量。C. 面力分量。D. 应力分量。5下列关于圣维南原理
19、的正确叙述是D 。A. 边界等效力系替换不影响弹性体内部的应力分布。B. 等效力系替换将不影响弹性体的变形。C. 圣维南原理说明弹性体的作用载荷可以任意平移。D. 等效力系替换主要影响载荷作用区附近的应力分布,对于远离边界的弹性体内部的影响比较小。二、 计算题(共15分)如图所示的三角形截面水坝,其左侧作用着比重为的液体,右侧为自由表面。试写出以应力分量表示的边界条件。解:在平面应力边界条件下,应力须满足 (1) (5)在表面处, (1); (1), (1) (1)代入公式(1),得 (1)在处, (1); (1), (1) (1)代入公式(1),得 (1)四、计算题(共10分)试考虑下面平面
20、问题的应变分量有否可能存在,若存在,需满足什么条件?,;解:应变分量存在的必要条件是满足形变协调条件,即 (4)将各分量分别代入,得=0, (2)=0, (2)=0 (2)无论A、B、C、D取何值,都满足形变协调条件。基本概念解释(24分,6小题)(1) 弹性力学的基本假定(2) 平面应变问题(3) 平面应力问题(4) 圣维南原理(5) 逆解法1、 简单题(40分,4题)(1) 列出图示全部边界条件。 (2) 求出下列应力函数的应力分量,并考察该应力函数是否满足相容方程A: B:(3) 根据圣维南原理,比较图示中OA边的面力是否等效,。2、 综合题(36分)(1) 设单位厚度的悬臂梁在左端受到集中力和力矩作用(如图),体力不计,试用应力函数求解应力分量。(2) 矩形截面的长柱,密度为,在一边侧面上受均布正应力,试求应力分量,体力不计。