广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc

上传人(卖家):aben 文档编号:63290 上传时间:2018-10-02 格式:DOC 页数:9 大小:950.88KB
下载 相关 举报
广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc_第1页
第1页 / 共9页
广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc_第2页
第2页 / 共9页
广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc_第3页
第3页 / 共9页
广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc_第4页
第4页 / 共9页
广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 1 广东省广州市番禺区 2016-2017学年高一数学下学期期中试题 卷 选择题 60分 一、选择题 : 本大题共 12小题,每小题 5分,共 60分,在每小题给出的四个选项 中,只有一项是符合题目要求的 1 与 60? 的 终边相相同的 角是 ( ) A 3? B 23? C 43? D 53? 2已知一个扇形的圆心角 的弧度数为 2,则 该扇形 的弧 长 与半径的比等于 ( ) A 21 B 1 C 2 D 4 3在 平行 四边形 ABCD 中,则 下 列结论 中 错误 的是 ( ) A | | | |AB AD? 一定成立 B ADABAC ? 一定成立 C AD BC? 一定成立 D

2、 BD AD AB? 一定成立 4已知 ? 为三角形的一个内角,且 4cos 5? ,则 tan? 的值为( ) A 34? B 34 C 43 D 43? 5向量 (2, 1), ( 4, )a b x? ? ? ?, 若 a b , 则 x 的值是 ( ) A 8? B 2? C 2 D 8 6已知向量 (c o s ,1), (1, s in )ab?,若 15ab? ,则 sin2? ( ) A 2425? B 1225? C 75? D 45? 7函数 22cos sinxxy ?的一条对称轴方程 是( ) A 12x ? B 0 C 0?x D. 12x ? 8 函数 ? ? 2

3、s i n , (0 , )3f x x x? ? ? ?,则 ?fx的值域是( ) A. ( 1,2? B. ( 3,2)? C. 3,2? D. ( 3,2? 9 已知函数 2( ) 2 sin 1f x x?, 若将其图象沿 x轴向右平移 a 个单位( a 0),所得图象关于原2 点对称,则实数 a 的最小值为 ( ) A 4? B 2? C 34? D ? 10 已知 P为 ?ABC 边 BC上一点, ,AB a AC b?,若 2?ABP ACPSS? ,则 AP? ( ) A 1322?ab B 1233?ab C 3122?ab D 2133?ab 11 若函数 ( ) sinf

4、 x x? 对任意 Rx? 都有 12( ) ( ) ( )f x f x f x?成立,则 | 21 xx ? 的最小值是( ) A 4 B 2 C 1 D 21 12.已知单位向量 ,abab =0,点 Q 满足 2( )OQ a b?,曲线 c o s s i n , 0 2 C P O P a b? ? ? ? ? ? ? ?,区域 0 , P r P Q R r R? ? ? ? ? ?若 C? 为两段分离的曲线,则 ( ) A 13rR? B 13rR? ? ? C 13rR? ? ? D 13rR? ? ? 卷 非选择题 90分 二、填空题 : 本大题共 4小题,每小题 5分,

5、共 20分 13 已知向量 ( 3 , ), ( 0 )a x x=, 若 2a= , 则 x= 。 14 已知函数 s i n ( ) ( 0 , 0 , 0 )y A x A? ? ? ? ? ? ? ? ? ?在 一个周期内的图象(右图),则 A? , ? 。 15 已知角 ,?满足 5sin( )45? ? ? ?, 3 10sin( )4 10? ?, 0 2? , 42? ,则角? 等于 16 已知 (1, 2)a? , ( 1, )b ? , a 与 b 的夹角为钝角,则实数 ? 的取值范围是 三、解答题:本大题共 6小题,共 70分解答应写出文字说明、证明过程或演算步骤 3 1

6、7.(本小题分)已知第二象限角 ? 的终边与以原点为圆心的单位圆交于点 12 5( , )13 13P? ( 1)写出三角函数 sin ,cos , tan? ? ?的值; ( 2) 若 c o s ( ) c o s ( ) ta n ( )2()s in ( ) s in ( )2f? ? ? ? ? ? ? ? ? ?,求 ()f? 的值; 18.(本小题分) 设向量 ,ab满足 | | 1 , ( ) 0 , | | 3a a a b a b? ? ? ? ? ?, ( 1)求证: 1ab? ; ( 2)求 |b 的值; ( 3)若 ( c o s , s in ) , ( 2 s i

7、n , 2 c o s )ab? ? ? ?,求 sin( )? 的值。 19.(本小题分)已知 ( s in , 2 ) , (1, c o s )a x b x?, ()f x ab? ,。 ( 1)若 ( ) 0fx? , 求 sin cossin cosxx? 的值; ( 2)若 ( ) ( 2 ) c o s ( 2 )g x f x x? ? ? ?, 求 函数 ()gx的 周期及单调区间 。 4 20.(本小题分)已知函数 1( ) s in ( )23f x a x b? ? ?, ,ab R? ( 1)若 2, 1ab?,作函数 ()y f x? , ,3 x ? 的简图(要

8、求列表、描点); ( 2)若函数 ( ), , y f x x ? ? ?的最小值 -2,最大值为 1,求 ,ab的值。 21(本小题满分 12分) 如图示, P 是以 AB 为直径的圆的下半圆弧上的一动点(异于 A、 B 两点), C 、 D 分别为 A 、 B 在过点 P的 直线 l 上的射影( A 、 B 在直线 l 的上方),记 ABP ?, PBD ?,向量 i 直线 l 。 ( 1) 若 2AB? ,求 ABP? 面积 S 的最大值及 S 取 得最大值时 ? 的值 ; ( 2) 若 2AB? ,用 m 表示 向量 AP 、 PB 在向量 i 方向上的投影之和 的绝对值,试问 ? 、

9、 ? 满足什么条件时, m 有最大值? ( 3) 若 1AC? , 3BD? , 010? ,求 AP BP? 的值。 22(本小题满分 12分) 已知 ,ab R? , 0a? ,函数 ( ) 2 ( s i n c o s )f x x x b? ? ? ?, 1( ) s i n c o s 22ag x a x x a? ? ? ? ? ( 1)若 (0, )x ? , 25() 5f x b? ? ?,求 sin cosxx? 的值; ( 2)若不等式 ( ) ( )f x g x? 对任意 xR? 恒成立,求 b 的取值范围。 直线 l DCBAPi 5 16 学年 下 学期期中考

10、试高一数学 参考答案 一、选择题 DCABC ACDAB CD 二、填空题 13. 1 ;14. 2 , 23? ; 15.34? 16. 12? 且 2? 三、解答题 17. 解:( 1)由三角函数的定义得 5sin 13? , 12cos 13? , 5tan 12? . . . .4分 ( 2) s i n c o s t a n( ) t a nc o s s i nf ? ? ? ? ?512? . . . . . . . 10分 18.设向量 ,ab满足 | | 1 , ( ) 0 , | | 3a a a b a b? ? ? ? ? ?, ( 1)证明: ( ) 0a a b?

11、 ? ? 2( ) 0a a b? ? ? ? 2| | 1a b a? ? ? ? . . . .4分 ( 2)解:由 | | 3ab? 得 2| | 3ab? 即 22| | | | 2 3a b a b? ? ? 22| | 3 2 | | 3 2 1 4b a b a? ? ? ? ? ? ? ? 即 | | 2b? . . . .8分 ( 3)解: ( c o s , s i n ) ( 2 s i n , 2 c o s ) 2 ( c o s s i n s i n c o s ) 2 s i n ( )ab ? ? ? ? ? ? ? ? ? ? ? ? ? ? 又由( 1)得

12、 1ab? ? ? 所以 1sin( ) 2? . . .12分 19 解: (1) ( ) s in 2 c o sf x a b x x? ? ? . . . 1分 (法一)由 s in 2 c o s 0a b x x? ? ?得 sin 2cos? . . . . 2分 所以 s i n c o s 2 c o s c o s 1s i n c o s c o s c o s 3? ? ? ? ? ? ? ? ? . . . . .4分 (法二) 由 0ab? 得 sin 2cos? ,即 tan 2? . . . . 2分 所以 s i n c o s t a n 1 2 1 1s

13、i n c o s t a n 1 2 1 3? ? ? ? ? ? ? ? ? ? ? ? ? . . . . .4分 ( 2) ( ) s i n ( 2 ) 2 c o s ( 2 ) c o s ( 2 ) s i n 2 c o s 2g x x x x x x? ? ? ? ? ? ? ? ? . . . .5分 6 2 ( s i n 2 c o s c o s 2 s i n )44?xx? ? ?2 sin(2 )4?x? ? ? . . . .7分 周期 T=22? ? . . .8分 由 2 2 22 4 2? ? ?k x k? ? ? ? ? ?得 3 ,88?k x

14、 k k Z? ? ? ? ? ? 即 ()gx的单调减区间为 3 , ,88?k k k Z? ? ? ? . .10分 由 32 2 22 4 2? ? ?k x k? ? ? ? ?得 37 ,88?k x k k Z? ? ? ? ? 即 ()gx的 单调增区间为 37 , ,88?k k k Z? ? ? 所以 ()gx 的减区间为 3 , 88?kk? ? ? ,增区间为37 , ,88?k k k Z? ? ? . .12分 20.( 1) 1( ) 2 s in ( ) 123f x x ? ? ? x ? 23? 3? 43? 73? 3? 123x ? 6? 0 2? ?

15、32? 116? y 0 1 3 1 -1 0 . . . . . . . . . .3 分(每两组给 1分或每行给 1分) . . . .6分 ( 2)由 x? ? ? 得 156 2 3 6x? ? ? ? ? ?, ? 11in ( ) 12 2 3x ? ? ? ? . .8分 ? 23? 3? 43? 73? 3? x O 3 1 1? 7 ?01 221aabab? ? ? ?或01 122aabab? ? ? ? ?. . . . . . . . .10分 解之得 21ab? ?或 20ab? ?. . . . . . . . .12 分 21解: (1)由 AB为直径得圆周角

16、090APB?, 1 ( 2 s i n ) ( 2 c o s ) s i n 22S ? ? ? ? ?, (0, )2? , 2 (0, )? 所以当 2 2? ,即 4? 时, min 1S ? 。 ? 3分 ( 2)由 Rt ACP? 与 Rt PDB? 相似得 APC ?,又 2BPD ? ? ? ? , 所以 | | | c o s , | | c o s , |m A P A P i P B P B i? ? ? ? ? ? | | c o s , | | | c o s , |A P A P i P B P B i? ? ? ? ? ? | | c o s , | | c o

17、 s ,A P A P C D P B P B C D? ? ? ? ? ? 2 s i n c o s 2 c o s s i n 2 s i n ( )? ? ? ? ? ? ? ? ? ? 6分 ( 0 , )ABD? ? ? ? ? ? ? 7分 所以当 2? 时, m 的最大值等于 2 ? 8分 (法二)显然 ()f? 也等于向量 AB 在向量 CD 方向上的投影 ? 5分 所以22( ) | | c o s , c o s , 2 c o s ,f A B A B C D A P P B A B C D A B C D? ? ? ? ? ? ? ? ? ? ? 6分 当 cos ,

18、 0AB CD? ?即向量 ,ABCD 共线且同向时, m 有最大值 2,此时 2? ? 8分 直线 l DCBAP8 ( 3)由相似三角形得 010PBD APC? ? ? ?,由直角三形得0013,s in 1 0 c o s 1 0A P P B?, 所以 0013s in 1 0 c o s 1 0A P P B? ? ?00000 0 0 0134 ( c o s 1 0 s in 1 0 )c o s 1 0 3 s in 1 022s in 1 0 c o s 1 0 2 s in 1 0 c o s 1 0? ? 10 分 0 0 0 004 ( s i n 3 0 c o s 1 0 c o s 3 0 s i n 1 0 )s i n 2 0?0 0 0004 s i n ( 3 0 1 0 ) 4 s i n 2 0s i n 2 0 s i n 2 0?=4?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 考试试卷 >
版权提示 | 免责声明

1,本文(广东省广州市番禺区2016-2017学年高一数学下学期期中试题(有答案,word版).doc)为本站会员(aben)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|