1、 1 2016 2017学年度高一级第二学期期末试题(卷) 数学(文科) 一、 选择题(本大题共 12小题,每题 5分, 共 60分) 1如果 a0,且 S170,则当 Sn最大时 n的值为 ( ) A 8 B 9 C 10 D 16 12 在 ABC? 中,若 BbAa coscos ? ,则此三角形是( ) A等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形 二填空题(本大题共 4小题,每小题 5分,共 20分) 13. 44cos sin88? = . 14.函数 4 ( 0)y x xx? ? ? 的最小值为 _; 15.已知变量 x, y满足约束条件?112yxy
2、xy ,则 z=3x+y的最大值 . 16.已知角 ? 的终边过点 ? co ssin2),3,4( ? 则P 的值为 三、解答题 (解答应写出文字说明、证明过程或演算步骤 )(共 70分 ) 17.(本题满分 10 分 ) 已知平面直角坐标系中,点 O 为原点, ( 3, 4)A? , (5, 12)B ? . ( 1)求 AB? 的坐标及 AB? ; ( 2) 若 OC OA OB? ? ?, OD OA OB? ? ?,求 OC? 及 OD? 的坐标; ( 3)求 OAOB? . 18.(本题满分 12 分 )已知函数 ( ) 2 c o s (sin c o s )f x x x x?
3、 ( 1)求 5()4f ? 的值; ( 2)求 ()fx的 最小正周期和单调递增区间 . 3 19.(本题满分 12 分 )在 ABC? 中, ,abc分别为内 角 ,ABC 所对的边长,已知 41cos,2,1 ? Cba ( 1)求 ?ABC的周长; ( 2)求 )cos( CA? 的值 . 20.(本题满分 12 分 )已知等差数列 na 满足: 267, 753 ? aaa , ?na 的前 n 项和为 nS . ( 1)求 na 及 nS ; ( 2)令 nb =112?na(nN? ),求数列 ?nb 的的前 n 项和 nT . 21. .(本题满分 12分 )已知 baba 与,5,4 ? 的夹角为 ?60 ,求 ba?34 22.(本题满分 12 分 )已知等差数列 ?na 满足 2 322n nnS ? ?. ( 1)求 ?na 的通项公式; (2)求数列12nna?的前 n 项和 .