1、 导入新课讲授新课当堂练习课堂小结 简单图形的坐标表示第3章 图形与坐标 八年级数学下XJ 教学课件1.能建立适当的直角坐标系,描述图形的位置;重点2.通过用直角坐标系表示图形的位置,使学生体会平面直角坐标系在实际问题中的应用难点学习目标导入新课导入新课情境引入问题:如果某小区里有一块如以下图的空地,打算进行绿化,小明想请他的同学小慧提一些建议,小明要在 中告诉小慧同学如以下图的图形,为了描述清楚,他使用了直角坐标系的知识你知道小明是怎样表达的吗?建立坐标系求图形中点的坐标一问题:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐
2、标.ABCD讲授新课讲授新课44yxABCD解:如图,以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系此时,正方形四个顶点A,B,C,D的坐标分别为:A(0,0),B(4,0),C(4,4),D(0,4).OABCDA(0,-4),B(4,-4),C(4,0),D(0,0).yxO想一想:还可以建立其他平面直角坐标系,表示正方形的四个顶点A,B,C,D的坐标吗?A(-4,0),B(0,0),C(0,4),D(-4,4).A(-4,-4),B(0,-4),C(0,0),D(-4,0).A(-2,-2),B(2,-2),C(2,2),D(-2,2).追问由上得知,建立的平面
3、直角坐标系不同,那么各点的坐标也不同你认为怎样建立直角坐标系才比较适当?【总结】平面直角坐标系建立得适当,可以容易确定图形上的点,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系又如以正方形的中心为原点建立平面直角坐标系建立不同的平面直角坐标系,同一个点就会有不同的坐标,但正方形的形状和性质不会改变例1:如图,矩形ABCD的长和宽分别为8和6,试建立适当的平面直角坐标系表示矩形ABCD各顶点的坐标,并作出矩形ABCD.典例精析因为BC=8,AB=6,可得点A,C,D的坐标分别为:A0,6,C8,0,D8,6.依次连接A,B,C,D,可得所求作的矩形.ACD解:如以下图,以点B为坐标原
4、点,分别以BC,AB 所在直线为x 轴,y轴,建立平面直角坐标系.规定1个单位长度为1.点B的坐标为0,0.变式:长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(2,3)请你写出另外三个顶点的坐标解:如图建立直角坐标系,长方形的一个顶点的坐标为A(-2,-3),长方形的另外三个顶点的坐标分别为B(2,3),C(2,3),D(2,3)由条件正确确定坐标轴的位置是解决此题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了方法总结 右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋的坐标是(2,
5、1),白棋的坐标是(1,3),那么黑棋的坐标是_解析:由白棋的坐标是(2,1),白棋的坐标是(1,3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋的坐标是(1,2)练一练(1,2)例2:以以下图是一个机器零件的尺寸规格示意图,试建立适当的平面直角坐标系表示其各顶点的坐标,并作出这个示意图.解:过点D 作AB 的垂线,垂足为点O,以点O 为原点,分别以AB,DO所在直线为x轴,y轴,建立平面直角坐标系,如上右图所示.规定1 个单位长度为100 mm,那么四边形ABCD 的顶点坐标分别为:A-1,0,
6、B4,0,C3,2,D0,2.依次连接A,B,C,D,那么图中的四边形ABCD即为所求作的图形.坐标平面内图形面积的计算二画一画:你能在直角坐标系里描出点A(-4,-5),B(-2,0),C(4,0)吗?并连线Oxy-5 -4 -3 -2 -1 1 2 3 4 54321-1-2-3-4-5ABCOxy-5 -4 -3 -2 -1 1 2 3 4 54321-1-2-3-4-5ABC问题:你能求出ABC的面积吗?D解:过点A作ADx轴于点D.A(-4,-5),D(-4,0).由点的坐标可得 AD=5,BC=6,SABC=BCAD =65=15.1212例3:在平面直角坐标系中描出以下各组点,并
7、将各组内的点用线段依次连接起来得到一个封闭图形,说说得到的是什么图形,并计算他们的面积.1A(5,1),B(2,1),C(2,-3)(2)A(-1,2),B(-2,-1),C(2,-1),D(3,2)321-2-1-34xyABCDABC-1-2OO12 345xy224-2-2(1)得到一个直角三角形,如以下图.S=34=6.(2)得到一个平行四边形,如以下图.S=34=12.12例4:如图,点A(2,1),B(4,3),C(1,2),求ABC的面积解析:此题宜用补形法过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交
8、EA的延长线于点F,然后根据SABCS长方形BDEFSBDCSCEASBFA即可求出ABC的面积例4:如图,点A(2,1),B(4,3),C(1,2),求ABC的面积解:如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F.A(2,1),B(4,3),C(1,2),BD3,CD1,CE3,AE1,AF2,BF4,SABCS长方形BDEFSBDCSCEASBFA BDDE DCDB CEAE AFBF 121.51.545.121212 此题主要考查如何利用简单方法求坐标系中图形的面积三角形三个顶点坐
9、标,求三角形面积通常有三种方法:方法一:直接法,计算三角形一边的长,并求出该边上的高;方法二:补形法,将三角形面积转化成假设干个特殊的四边形和三角形的面积的和与差;方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形方法总结当堂练习当堂练习xyABCA(1,4),B(-4,0),C(2,0).ABC的面积是2.假设BC的坐标不变,ABC的面积为6,点A的横坐标为-1,那么点A的坐标为 12O(1,4)(-4,0)(2,0)CxyAB(-4,0)(2,0)(-1,2)或(-1,-2)O12341O322 112343-4yABCx3.对于边长为4的正三角形ABC,建立适当的
10、直角坐标系,写出各个顶点的坐标.解:A(0,),B(-2,0),C(2,0).2 34.在一次“寻宝游戏中,寻宝人已经找到了坐标为3,2和3,-2的两个标志点,并且知道藏宝地点的坐标为4,4,如何确定直角坐标系找到“宝藏?12345-4-3-2-13 31 14 42 25 5-2-2-1-1-3-3y yO3 3,-2-2x x3 3,2 24 4,4 4解:如以下图.平方根、立方根第6章 实 数导入新课讲授新课当堂练习课堂小结2.立方根七年级数学下HK教学课件情境引入学习目标1.了解立方根的概念,会用根号表示一个数的立方根.重点2.能用开立方运算求某些数的立方根,了解开立方和 立方互为逆运
11、算.重点,难点导入新课导入新课 某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?情境引入讲授新课讲授新课立方根的概念及性质一问题:要做一个体积为27cm3的正方体模型如图,它的棱长要取多少?你是怎么知道的?解:设正方体的棱长为x,那么这就是要求一个数,使它的立方等于27.因为 所以 x=3.正方体的棱长为3.327,x 3327,想一想(1)什么数的立方等于-8?(2)如果问题中正方体的体积为5cm3,正方体的边长又该是多少?-235cmu立方根的概念立方根的概念 一般地,一个数的立方等于
12、a,这个数就叫做a的立方根,也叫做a的三次方根记作.u立方根的表示立方根的表示 一个数a的立方根可以表示为:根指数被开方数其中a是被开方数,3是根指数,3不能省略.读作:三次根号 a,3a3a填一填:填一填:根据立方根的意义填空:因为 =8,所以8的立方根是();32 因为()3=0.125,所以的立方是 ;因为()3 0,所以0的立方根是;因为 ()3 8,所以8的立方根是 ;因为()3 ,所以 的立方().82782702-20-212122323u立方根的性质立方根的性质 一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.立方根是它本身的数有1,-1,0;平方根是它本身
13、的数只有0.知识要点u平方根与立方根的异同平方根与立方根的异同 被开方数平方根立方根有两个互为相反数有一个,是正数无平方根零有一个,是负数零正数负数零开立方及相关运算二a叫做被开方数3叫做根指数 3a 每个数a都有一个立方根,记作 ,读作“三次根号a.如:x3=7时,x是7的立方根3a求一个数a的立方根的运算叫做开立方,a叫做被开方数注意:这个根指数3绝对不可省略.求一个数的立方根的运算叫作“开立方.“开立方与“立方互为逆运算逆向思维 与学习开平方运算的过程一样,表达着一种重要的数学思想方法,你有体会了么?典例精析例1 求以下各数的立方根:;216.0.5;27;125833:(1)32727
14、3273.,的立方根是,即解解3328(2)512582125582.1255,的立方根是,即;8331234533(4)0.60.2160.216 0.60.2160.6.,的立方根是,即(5)-5的立方根是.53333273(3)328833382333.82,的立方根是,即;833340.216;55.33(2)_33(3)_330_求以下各式的值:体会:对于任何数体会:对于任何数a,33_a a 240-2-3探究探究1332 _=334 _=温馨提示:开立方与立方运算互为逆运算温馨提示:开立方与立方运算互为逆运算.体会:对于任何数体会:对于任何数a,33_a33(8)_338_332
15、7_3327_330_a 8 270-8-27探究探究2求以下各式的值:3_a3a体会:(1)求一个负数的立方根,可以先求出这个负数绝对值的立方根,然后再取它的相反数.(2)负号可从“根号内 直接移到“根号外.求以下各式的值求以下各式的值:(1);(2)30.00830.008探究探究3-求以下各数的值:.165;54;643;642;125.013333333 10.5,24,34,45,516.练一练例2 求以下各式的值:33333818;20.064;3;49.125 3331822 :;解解 333822312555 ;33320.0640.40.4;33499.例3 x2 的平方根是
16、2,2xy7的立方根是3,求x2y2的算术平方根方法总结:此题先根据平方根和立方根的定义,运用方程思想求出x,y值,再根据算术平方根的定义求解解:x2的平方根是2,x24,x6.2xy7的立方根是3,2xy727.把x6代入,解得 y8.x2y26882100,x2y2 的算术平方根为10.例3 用计算器求以下各数的立方根:343,-1.331.解:依次按键:显示:7所以,2ndF433=3343=7.依次按键:显示:-1.1所以,2ndF1(-).331.331=1.1.13=用计算器求立方根三例4 用计算器求 的近似值精确到.32解:依次按键:显示:1.259 921 05所以,2ndF=
17、2321.260.()当堂练习当堂练习1.判断以下说法是否正确.(2)任何数的立方根都只有一个;()(3)如果一个数的立方根是这个数本身,那么这个数一定是零;()(5)0的平方根和立方根都是0.()(1)25的立方根是5;()(4)一个数的立方根不是正数就是负数;2.求以下各式的值 364(3).1253164;()320.001;()解:1 2 3 3644;30.0010.1;3644.1255 3.求以下各式的值:1664-(3)3327102)1(36427)2(33)5()4(2)5(335)5(234276427102334364276427330441664-3.105555原式4.将体积分别为600 cm3和129 cm3的长方体铁块,熔成一个正方体铁块,那么这个正方体的棱长是多少?解:因为600+129=729,729的立方根是9,所以正方体的棱长为9 cm.解:一个数的立方根等于它本身的数有0,1,1.当1a20时,a21,那么a1;当1a21时,a20,那么a0;当1a21时,a22,那么a .5.已知 ,求a的值3221-=1-aa2立方根立方根的概念及性质课堂小结课堂小结开立方及相关运算