1、 - 1 - 江西省赣州市十四县(市) 2017-2018学年高二文数下学期期中联考试题 第卷(选择题 共 60分) 一、 选择题 :本大题共 12 小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的 。 1设复数 21z i? ,则 z 的共轭复数是( ) A. 21i? B.12i? C. 21i? D.12i? 2. 在独立性检验中,统计量 2? 有三个临界值: 2.706、 3.841和 6.635,在一项打鼾与患心脏病的调查中,共调查了 1000人,经计算的 2? =18.87,根据这一数据分析,认为打鼾与患心 脏病之间 ( ) A有 95%的把握认为两者无关 B
2、约有 95%的打鼾者患心脏病 C有 99%的把握认为两者有关 D约有 99%的打鼾者患心脏病 3.变量 X与 Y相对应的一组数据为 (10,1), (11.3,2), (11.8,3), (12.5,4), (13,5);变量 U与 V相对应的一组数据为 (10,5), (11.3,4), (11.8,3), (12.5,2), (13,1), r1表示变量 Y与 X之间的线性相关系数, r2表示变量 V与 U之间的线性相关系数,则 ( ) A r2B”是“ sinAsinB”的充分条件,则下列命题是真命题的是 ( ) A p且 q B p或 q C p 且 q D p或 q 6.一名法官在审
3、理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是 ( ) A.甲 B.乙 C.丙 D.丁 7.“ 10恒成立,求 a的取值范围 . - 6 - 参考答案 一、 选择题 ( 本大题共 12小题,每小题 5分,共 60 分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C A B D B B C C A B D 二、填空题(本大题共 4小题,
4、每小题 5分,共 20分) 13. 1 2 3 41 ()3 R S S S S? ? ?14. 1 15. 3 16 22 三、解答题:解答应写出文字说明,证明过程和演算步骤(本大题 6题,共 70 分) 17.解 : 函数 f(x) x2 2mx 4(m R)的对称轴为 x m,故 P为真命题 ?m 2 . 2分 Q为真命题 ? 4(m 2)2 4 4 1 0?1 m 3. . 4 分 P Q为真, P Q为假, P与 Q一真一假 .5分 若 P真 Q假,则 m 2,且 m 1或 m 3, m 1; . 7分 若 P假 Q真,则 m 2,且 1 m 3, 2 m 3. . 9分 综上所述,
5、 m的取值范围为 m|m 1或 2 m 3 . 10 分 18.解 : ( 1)曲线 :C 48 c o s 4 sin 0? ? ? ? ? ?,利用 2 2 2xy? ?, cos x? ,sin y? 可得 C 直角坐标方程为 22( 4) ( 2) 16xy? ? ? ?; . 3 分 直线 l 经过点 (5, 2)P ? ,倾斜角 3? 可得直线 l 的参数方程为15,2322xtyt? ? ? ?( t 为参数) .6分 ( 2) 将 l 的参数方程代入曲线 C 的直角坐标方程 整理得: 2 15 0tt? ? ? , 21 4 15 61 0? ? ? ? ? ?, .8分 则
6、121tt? ? , 1215tt? ? , .9分 所以 21 2 1 2 1 2| | | | ( ) 4A B t t t t t t? ? ? ? ? ?1 4 15 61? ? ? ? .12分 - 7 - 19. 解:( 1)当 x 0等价于5a1 0,( ) 0 ,821 5 a( ) 0 , 0 .28ff? ? ? ? ?即 解不等式组得 -52,则 110 a2?.当 x变化时, ?fx? , ?fx的变化情况如下表: X 102?,0 1a?0,1a 11a2?,f (x) + 0 - 0 + f(x) 极大值 极小值 当 11x22?,时, f( x) 0 等价于1f(- )21f( )0,a?0,即25811- 0.2aa?0,解不等式组得 2 52 a?或 22a? .因此 2a5 .11分 综合( 1)和( 2),可知 a的取值范围为 0a5. .12分