2022年湘教版七下《多项式的因式分解》立体精美课件.ppt

上传人(卖家):ziliao2023 文档编号:7180040 上传时间:2023-10-07 格式:PPT 页数:45 大小:825.54KB
下载 相关 举报
2022年湘教版七下《多项式的因式分解》立体精美课件.ppt_第1页
第1页 / 共45页
2022年湘教版七下《多项式的因式分解》立体精美课件.ppt_第2页
第2页 / 共45页
2022年湘教版七下《多项式的因式分解》立体精美课件.ppt_第3页
第3页 / 共45页
2022年湘教版七下《多项式的因式分解》立体精美课件.ppt_第4页
第4页 / 共45页
2022年湘教版七下《多项式的因式分解》立体精美课件.ppt_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、 多项式的因式分解第3章 因式分解导入新课讲授新课当堂练习课堂小结七年级数学下(XJ)教学课件学习目标1.理解因式分解的意义和概念;2.掌握因式分解与整式乘法的区别和联系.(重点)问题1 6 等于 2 乘哪个整数?623问题2 x21等于x+1乘哪个多项式?2111xxx 导入新课导入新课回顾与思考1.运用整式乘法法则或公式填空:(1)m(a+b+c)=;(2)(x+1)(x-1)=;(3)(a+b)2=.ma+mb+mcx2-1a2+2ab+b2讲授新课讲授新课因式分解一合作探究2.根据等式的性质填空:(1)ma+mb+mc=()()(2)x2-1=()()(3)a2+2ab+b2=()2m

2、 a+b+cx+1 x-1a+b 都是多项式化为几个整式的积的形式 对于整数 6 与 2,有整数 3 使得 623,我们把2叫作6的一个因数同理,3也是6的一个因数 对于多项式 ,有多项式 x1使得 ,我们把x+1叫作 x21的一个因式,同理,x1也是 x21 的一个因式211xx与2111xxx u定义:把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.概念学习 一般地,对于两个多项 f 与 g,如果有多项式 h 使得 f=gh,那么我们把 g 叫作 f 的一个因式,此时,h 也是 f 的一个因式x2-1 (x+1)(x-1)因式分解

3、整式乘法x2-1=(x+1)(x-1)等式的特征:左边是多项式,右边是几个整式的乘积想一想:整式乘法与因式分解有什么关系?是互为相反的变形,即典例精析例1 下列从左到右的变形中是因式分解的有()x2y21(xy)(xy)1;x3xx(x21);(xy)2x22xyy2;x29y2(x3y)(x3y)A1个 B2个 C3个 D4个B方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式在下列等式中,从左到右的变形是因式分解的有 ,不是的,请说明为什么?1x 辨一辨:am+bm+c=m(a+b)+c

4、24x2y=3x 8xyx2-1=(x+1)(x-1)(2x+1)2=4x2+4x+1x2+x=x2(1+)2x+4y+6z=2(x+2y+3z)最后不是积的运算因式分解的对象是多项式,是整式乘法每个因式必须是整式 万里长城是由砖砌成的,不少房子也是用砖砌成的,因此,砖是基本建筑块之一.在数学中也经常要寻找那些“基本建筑块”,例如,在正整数集中,像2,3,5,7,11,13,17,这些大于1的数,它的因数只有1和它自身,称这样的正整数为质数或素数,素数就是正整数集中的“基本建筑块”:每一个正整数都能表示成若干素数的乘积的形式122 2 3 302 3 5 有了式和式,就容易求出12和30的最大

5、公因数为2 36 进而很容易把分数 约分:分子与分母同除以6,得1230122305例如 同样地,在系数为有理数(或系数为实数)的多项式组成的集合中,也有一些多项式起着“基本建筑块”的作用:每一个多项式可以表示成若干个这种多项式的乘积的形式,从而为许多问题的解决架起了桥梁例1 检验下列因式分解是否正确?(1)x2 y-xy 2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).用什么方法检验因式分解是否正确呢?分析:看等式右边几个整式相乘的积与左边的多项式是否相等.解:(1)因为xy(x-y)=x2 y-xy 2,所以因式分解 x2 y-x

6、y2=xy(x-y)正确;(2)因为(2x+1)(2x-1)=4x2-1,所以因式分解 2x2-1=(2x+1)(2x-1)错误;(3)因为(x+1)(x+2)=x2+3x+2,所以因式分解x2+3x+2=(x+1)(x+2)正确.判断下列各式从左到右的变形中,是否为因式分解:辩一辩 A.x(ab)=axbx B.x21+y2=(x1)(x+1)+y2 C.y21=(y+1)(y1)D.ax+by+c=x(a+b)+c E.2a3b=a22ab F.(x+3)(x3)=x29提示:判定一个变形是因式分解的条件:(1)左边是多项式(2)右边是积的形式.(3)右边的因式全是整式.例2 若多项式x2

7、+ax+b分解因式的结果为a(x2)(x+3),求a,b的值.解:因为x2+ax+b=a(x2)(x+3)=ax2+ax-6a.所以a=1,b=6a=6,典例精析方法归纳:对于此类问题,掌握因式分解与整式乘法为互逆运算是解题关键,应先把分解因式后的结果乘开,再与多项式的各项系数对应比较即可.下列多项式中,分解因式的结果为-(x+y)(x-y)的是()Ax2y2 Bx2+y2Cx2+y2 Dx2y2B练一练x2-y29-25x2x2+2x+1xy-y2(x+1)2y(x-y)(3-5x)(3+5x)(x+y)(x-y)1.连线:当堂练习当堂练习2.把下列多项式因式分解:214x 22xx3.求4

8、,6,14的最大公因数.21xxx x4=1226=12314=127最大公因数是2 4.判断下列各式哪些是整式乘法?哪些是因式分解?(1)x2-4y2=(x+2y)(x-2y)(2)2x(x-3y)=2x2-6xy (3)(5a-1)2=25a2-10a+1 (4)x2+4x+4=(x+2)2 (5)2R+2r=2(R+r)因式分解整式乘法整式乘法因式分解因式分解5.若多项式x4+mx3+nx16含有因式(x2)和(x1),求mn的值.解:因为x4+mx3+nx16的最高次数是4,所以可设x4+mx3+nx16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-

9、3)x3+(b-3a+2)x2+(2a-3b)x+2b 比较系数得 2b=-16,b-3a+2=0,a-3=m,2a-3b=n 解得a=-2,b=-8,m=-5,n=20.所以mn=520=1006.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.解:分解因式甲看错了b,但a是正确的,其分解结果为x2+ax+b=(x+2)(x+4)=x2+6x+8,所以a=6,同理,乙看错了a,但b是正确的,分解结果为x2+ax+b=(x+1)(x+9)=x2+10 x+9,所以b=9,因此a+b=15aabba b

10、a+ba2 b2=(a+b)(a b)7.手工课上,老师给南韩兵同学发下一张如左图形状的纸张,要求他在恰好不浪费纸张的前提下剪拼成右图形状的长方形,作为一幅精美剪纸的衬底,请问你能帮助南韩兵同学解决这个问题吗?能给出数学解释吗?因式分解要注意以下几点:3.要分解到不能分解为止.2.分解的结果一定是几个整式的乘积的形式.1.分解的对象必须是多项式.因式分解与整式乘法是互逆过程.课堂小结课堂小结学习目标1.探索并运用平方差公式进行因式分解,体会转化 思想(重点)2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点)导入新课导入新课a米米b米米b米米a米米(a-b)情境引入如图,在边长

11、为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?a2-b2=(a+b)(a-b)讲授新课讲授新课用平方差公式进行因式分解一想一想:多项式a2-b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式)(baba-+=22ba-)(22bababa-+=-整式乘法因式分解因式分解两个数的平方差,等于这两个数的和与这两个数的差的乘积.平方差公式:辨一辨:下列多项式能否用平方差公式来分解因式,为什么?符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成:()2-()2的形式.(1)x2+y2(2)x2-y2(3)-x2-y2-

12、(x2+y2)y2-x2(4)-x2+y2(5)x2-25y2(x+5y)(x-5y)(6)m2-1(m+1)(m-1)2(1)49;x 例1 分解因式:22(2)3x(23)(23);xx22(2)()().xpx qaabb(+)(-)a2 -b2 =解:(1)原式=2x32x2x33()()()()xpx qxpx q(2)原式(2)().xp q p q 22()()xpx q典例精析方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.分解因式:(1)(ab)24a2;(2)9(mn)2(mn)2.针对训练(2m4n

13、)(4m2n)解:(1)原式(ab2a)(ab2a)(ba)(3ab);(2)原式(3m3nmn)(3m3nmn)4(m2n)(2mn)若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解.)(22bababa-+=-2015220142=(2mn)2-(3xy)2=(x+z)2-(y+p)2=例2 分解因式:443(1);(2).xya bab解:(1)原式(x2)2-(y2)2(x2+y2)(x2-y2)分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解.(x2+y2)(x+y)(x-y);(2)原式ab(a2-1)分解因式时,一般先用提公因式法进行分解,然后

14、再用公式法.最后进行检查.ab(a+1)(a-1).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止分解因式:(1)5m2a45m2b4;(2)a24b2a2b.针对训练(a2b)(a2b1).5m2(a2b2)(ab)(ab);解:(1)原式5m2(a4b4)5m2(a2b2)(a2b2)(2)原式(a24b2)(a2b)(a2b)(a2b)(a2b)例3 把x3y2-x5 因式分解.解:x3y2-x5=x3(y2-x2)=x3(y+x)(y-x)分析:x3y2-x5有公因式 x3,应先提出公因式,再用公式进行因式分解

15、.问题:能直接用公式分解因式吗?又如:把-4ax2+16ay2因式分解解:-4ax2+16ay2=-4a(x2-4y2)=-4a(x+2y)(x-2y)例4 已知x2y22,xy1,求x-y,x,y的值xy2.解:x2y2(xy)(xy)2,xy1,联立组成二元一次方程组,解得1,23.2xy 方法总结:在与x2y2,xy有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.例5 计算下列各题:(1)1012992;224.解:(1)原式(10199)(10199)400;(2)原式422)=4()()41007=2800.方法总结:较为复杂的有理数运算,可以运用

16、因式分解对其进行变形,使运算得以简化.例6 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除即多项式(2n+1)2-(2n-1)2一定能被8整除证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n2=8n,n为整数,8n被8整除,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除1.下列多项式中能用平方差公式分解因式的是()Aa2(b)2 B5m220mnCx2y2 Dx29当堂练习当堂练习D2.分解因式(2x+3)2-x2的结果是()A3(x2+4x+3)B3(x2+2x+3)C(3x+3)(x+3)D3(x+1)(x+3

17、)D3.若a+b=3,a-b=7,则b2-a2的值为()A-21 B21 C-10 D10A4.把下列各式分解因式:=_;=_;=_;(4)-a4+16=_.(4a+3b)(4a-3b)4ab9xy(y+2x)(y-2x)(4+a2)(2+a)(2-a)5.若将 2xn-81分解成 4x2+9 2x+3 2x-3,则n的值是_.46.已知4m+n=40,2m-3n=5求 m+2n2-3m-n2的值原式=-405=-200解:原式=m+2n+3m-n m+2n-3m+n=4m+n 3n-2m=-4m+n(2m-3n,当4m+n=40,2m-3n=5时,7.如图,在边长为6.8 cm正方形钢板上,

18、挖去4个边长为1.6 cm的小正方形,求剩余部分的面积解:根据题意,得222(21.6)2223.2)(6.8 3.2)36(cm2)答:剩余部分的面积为36 cm2.8.(1)992-1能否被100整除吗?解:(1)因为 992-1=(99+1)(99-1)=10098,所以,(2n+1)2-25能被4整除.(2)n为整数,(2n+1)2-25能否被4整除?所以992-1能否被100整除.(2)原式=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=2(n+3)2(n-2)=4(n+3)(n-2).课堂小结课堂小结平 方 差公 式 分解 因 式公式a2-b2=(a+b)(a-b)步骤一提:公因式;二套:公式;三查:多项式的因式分解有没有分解到不能再分解为止.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(2022年湘教版七下《多项式的因式分解》立体精美课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|