高等数学积分表推导全过程(完美打印版) (1).pdf

上传人(卖家):汀枫 文档编号:785968 上传时间:2020-10-09 格式:PDF 页数:25 大小:369.51KB
下载 相关 举报
高等数学积分表推导全过程(完美打印版) (1).pdf_第1页
第1页 / 共25页
高等数学积分表推导全过程(完美打印版) (1).pdf_第2页
第2页 / 共25页
高等数学积分表推导全过程(完美打印版) (1).pdf_第3页
第3页 / 共25页
高等数学积分表推导全过程(完美打印版) (1).pdf_第4页
第4页 / 共25页
高等数学积分表推导全过程(完美打印版) (1).pdf_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、 (一)含有 ax+b 的积分 1.Cbax a baxd baxa dx +=+ + = + ln 1 )( 11 bax 2.()()C ua bax baxd a dx u uu + + + =+=+ ) 1( )( )(bax 1 bax 3.Cbaxbbax abax baxd a b dax bax bax a dx bax bbax a dx bax ax a dx bax x += + + + + = + + = + = + )ln( 1)(111 222 4. + + += + + = + = + bax baxd bbaxdbbaxdbax a dx bax babxbax

2、 a dx bax xa a dx bax x)( )(2)()( 12)(11 2 3 22 2 22 2 2 Cbaxbbaxbbax a + +=ln)(2)( 2 11 22 3 5.()C x bax b xCa b bax b Caxbax b dx axbaxb a baxx dx + + =+=+= + = + ln 1 lnln 1 ln 1 lnln 111 )( 11 6. ()() Cx b a bax b a bxx dx b a bax dx b a dx xb dx bx a baxb a xbbaxx dx += + += + += + lnln 11111 2

3、222 2 2 2 22 C x bax b a bx + + +=ln 1 2 7. ()()()() C baxa b bax abax dx a b bax dx a dx baxa b baxabax xdx + + += + + = + + = + 1 ln 111 22222 C bax b bax a + + +=ln 1 2 8. () () ()()() + + += + + = + + = + C bax b baxbax abax dx a b bax xdx a b a x dx bax a b a bx bax a dx bax x 2 322 2 222 2 2 2

4、 2 2 ln2 12 21 9. ()()()() C x bax bbaxb C b x bax bbaxbx dx bbax dx b a baxb adx baxx dx + + + =+ + =+ + + = + ln 11ln ln 111 2222222 (二)含有bax+的积分 10.()()Cbax a baxdbax a dxbax+=+=+ 3 3 21 11.()()()() () +=+=+=+ 3 2 3 2 5 2 23 15 2 3 2 5 21 baxbax a Cbax a b bax a dxbax a b dxbaxbax a dxbaxxC+ 12.(

5、)()()+=+=+ bax aa b bax a dxbax a b dxbaxx a b dxbaxbax a dxbaxx23 15 2 2 7 221 2 7 32 2 2 2 2 ()()()()Cbaxbabxxa a Cbax a b bax+=+ 3 222 3 3 3 2 3 81215 105 2 3 2 高等数学积分表推导过程 高等数学积分表推导过程 13. () ()=+= + + += + + + = + Cbax a b bax abax baxd a b dxbax abax dx a b dx bax bax abax xdx 2 3 22 2 3 211 ()

6、Cbaxbax a +=2 3 2 2 14. () ()()()+= + + + + = + baxdbax a b baxdbax abax dx a b bax xdx a b dx bax bax a dx bax x 3 2 3 32 2 2 2 2 2121 ()Cbaxbbxxa abax dx a b += + 222 32 2 843 15 2 15. +baxx dx 当 b0 时,有 C bbax bbax b baxd bbaxbbaxbaxb a baxx dx + + + =+ + + = + ln 111 2 当 b0 时,令 ax+b=t,则 dx=dt aa

7、bt d 1 = C b t bb t d b t b b td b t btd bt t a bt dt a baxx dx + = + = + = = = + arctan 2 1 12 1 1 2 2 1 22 C b bax b + + =arctan 2 所以= + baxx dx () () + + + 0arctan 1 0ln 1 bC b bax b bC bbax bbax b 16. + + = + + + = + + + = +b a dx xb baxb bax abx baxx dx b a dx bx bax bax baxx dx b a dx baxbx ba

8、x baxx dx 2 2 2 2 2 22 2 22222 + + = + = +baxx dx b a bx bax baxx dx b a dx v vuvu baxx dx 22 2 17. + += + + + = + + + = + baxx dx bbax baxx dx bdx bax a dx baxx b bax a dx x bax 2)( 18. + + = + + + = + + + = + baxx dx b ab bx bax b baxx dx a baxx dx bdx baxx b baxx a dx x bax 2 1 )( 2 2 2 高等数学积分表推导

9、过程 高等数学积分表推导过程 + + + = + + baxx dxa x bax baxx dx a 2 (三)含有 x 2a2的积分 19. + 22 ax dx 设 x=atant( 22 1 时有 () + n ax dx 22 ()()() () ()() + + + + = + + + = dx ax a ax n ax x dx ax x n ax x nnnnn 22 2 1 22 1 2222 2 1 22 1 12) 1(2 即 () ()() nnnn IaIn ax x I 2 11 22 1 12+ + = 于是 () () () + + = 11 22 2 32 1

10、2 1 nnn In ax x na I 由此作递推公式并由 C a x a I+=arctan 1 1 即可得 n I ()()() () () + + + = + 1 22 21 22222 12 32 12 1 nnn ax dx an n axanax dx 21.C ax ax a dx axaxa dx axaxax dx = + = + = + = ln 2 111 2 111 22 (四)含有 ax 2+b(a0)的积分 22.() += + = + = + 0arctan 1 1 1 1 1 2 2 2 bCx b a ab x b a x b a d b a b x b a

11、 dx bbax dx ()() ()0ln 2 111 2 1 2 +acbxax的积分 29.dx a acb b a xa cbxax dx 1 2 2 2 4 4 2 += + 当acb4 2 时有 dx acb a b xa bac a cbxax dx + = + 4 2 4 1 4 4 2 2 2 2 2 令 acb a b xa t 4 2 2 2 + = 则dx acb a dt 4 2 2 = 则原式C acbbax acbbax acb t dt a acb acb a + + + = = 42 42 ln 4 1 12 4 4 4 2 2 2 2 2 2 综上所述 ()

12、 + + + +aax的积分 31. + 22 ax dx 由于tt 22 sectan1=+,不妨设 +tt, 因此()CaxxC a ax a x ax dx +=+ + += + 22 1 22 22 lnln 32. () + 3 22 ax dx 设 = 22 tan ttax,那么taaxsec 22 =+,tdtadx 2 sec=,于是 () Ct a dt ta dt ta ta ax dx += + sin 1 sec 11 sec sec 2233 2 3 22 a x t =tan,t xa a t cos sec 1 22 = + =, 22 costansin ax

13、 x ttt + = , () C axa x ax dx + + = + 2223 22 33. + 22 ax xdx ,不妨设 = 22 tan ttax,那么taaxsec 22 =+,tdtadx 2 sec=,于是 + 22 ax xdx = +=+=CaxCtatdttatdta ta ta 222 sectansecsec sec tan 34. () + 3 22 ax xdx 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 () C ax Ct a dt t t a tdta ta ta ax xdx + +

14、=+= + 22 2 33 3 22 1 cos 1 sec tan1 sec sec tan 35.+=+= + += + 2222222 2 22 22 222 22 2 2 )ln()ln( 22 ax x Caxxaaxx a ax x ax dx adxax ax dxx ()Caxx a + 22 2 ln 2 高等数学积分表推导过程 高等数学积分表推导过程 36. ()()() ()C ax x axx ax dx a ax dx dx ax aax ax dxx + + += + + = + + = + 22 22 3 22 2 223 22 222 3 22 2 ln 37.

15、 + 22 axx dx 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 C x aax a Ctt at dt atata tdta axx dx + + =+= = + 222 22 ln 1 cotcscln 1 sin 1 tansec sec 38. + 222 axx dx 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 C xa xa C ta dt t t atata tdta axx dx + + =+= = + 2 22 2222 2 222 si

16、n 1 sin cos1 sectan sec 39.+dxax 22 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 =+ ttatdttattattdatdtatdtatadxaxtansectansectansectansecsecsecsec 2222232222 () += 1 232222 tanseclnsectansec1secsecCttatdtattadttta ()Caxx aaxx Ctttt a dxax+ + =+=+ 22 2222 22 ln 22 tanseclntansec 2 40.() +d

17、xax 3 22 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 () =+tdtadxax 54 3 22 sec =tdttttttttdtdttansecsectan3tansectansecsec 2335 +=tdttdttttdtttt 353233 sec3sec3tansectansec3tansec () 1 3 tanseclntansec 2 1 secCtttttdt+= () 1 535 tanseclntansec 2 3 sec3tansecsecCtttttdttttdt+= ()() () a x

18、 a axa Ctttt a tt a tdtadxax + =+=+ 3 3 224 1 4 3 4 5422 4 tanseclntansec 8 3 tansec 4 sec ()()Caxxaaxax x C a axx a xaxa +=+ + + + + 2242222 1 22 2 224 ln 8 3 52 8 ln 8 3 41.dxaxx + 22 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 高等数学积分表推导过程 高等数学积分表推导过程 ()CaxC t a t td atdttatdtatatadxax

19、x+=+=+ 3 22 3 3 4 333222 3 1 cos3cos cos sectansecsectan 42.()()() 2222222 3 222222222222 52 8 axax x dxaxadxaxdxaxaaxaxdxaxx+=+=+=+ ()()()()Caxx a axax x Caxx a ax x aaxxa+=+ + 22 4 222222 2 222224 ln 8 2 8 ln 22 ln 8 3 43.dx x ax + 22 设 = 22 tan ttax,那么()taax 33 3 22 sec=+,tdtadx 2 sec=,于是 lncotcs

20、cln cossincos sin cossin sec tan sec 22 22 2 22 axaCtta t a t dt adt t t a tt dt atdta ta ta dx x ax +=+=+= + C x aax + + 22 44.dx x ax + 2 22 设 aax的积分 45. 22 ax dx 当ax 时,设 = 2 0sec ttax,那么tataaxtan1sec2 22 =,tdttadxtansec=,于是 ()()CaxxC a ax a x Ctttdtdt ta tta ax dx +=+ +=+= 22 1 22 22 lnlntansecln

21、sec tan tansec 当ax, 由上段结果有()() 22 1 22 2222 lnlnaxxCauu au du ax dx +=+= = ()CaxxC a axx C xax C+=+ =+ =+ 22 1 2 22 1 22 1 lnln 1 ln 综上所述,Caxx ax dx += 22 22 ln 高等数学积分表推导过程 高等数学积分表推导过程 46. () 3 22 ax dx ,设 = 2 0sec ttax,则()taax 33 3 22 tan=,tdttadxtansec=,于是 () C axa x C ta dt t t a dt t t a dt ta t

22、ta ax dx + =+= 222 2222233 3 22sin 1 sin cos1 tan sec1 tan tansec 47. 22 ax xdx ,设 = 2 0sec ttax,则taaxtan 22 =,tdttadxtansec=,于是 +=+= CaxCtatdtatdtta ta ta ax xdx 222 22 tansectansec tan sec 48. () 3 22 ax xdx ,设 = 2 0sec ttax,则taaxtan 22 =,tdttadxtansec=,于是 () + =+= C ax Ct a dt ta tdtta ta ta ax x

23、dx 22 233 3 22 1 cot 1 sin 11 tansec tan sec 49.Caxxaaxxaax x ax dxa dx ax ax ax dxx += + = 22222222 2 22 2 22 22 22 2 lnln 2 1 2 Caxx a ax x += 22 2 22 2 ln 22 50. ()()()() += + = + = 22 2 222 3 22 2 223 22 2 3 22 22 3 22 2 1 ln ax x a aaxx ax dx a ax dx ax dx adx ax ax ax dxx C ax x axxC+ +=+ 22 2

24、2 ln 51. 22 axx dx ,设 x时有 C x a C a t dt tta tta axx dx +=+= arccos tansec tansec 22 当0x时有,C x a a axx dx + = arccos 1 22 ,综上所述,有C x a a axx dx += arccos 1 22 52. 222 axx dx ,设 = 2 0sec ttax,则taaxtan 22 =,tdttadxtansec=,于是 C xa ax Ct at dt a dt tata tta axx dx + =+= = 2 22 2222 222 sin 1 sec 1 tanse

25、c tansec 高等数学积分表推导过程 高等数学积分表推导过程 53.dxax 22 ,设 = 2 0sec ttax,则taaxtan 22 =,tdttadxtansec=,于是 += = tt a tt a dt t t atdttatdttatadxaxtansecln 2 tansec 2cos cos1 tansectansectan 22 3 2 22222 ()Caxx a ax x Ctta+=+ 22 2 222 ln 22 tansecln 54.()dxax 3 22 ,设 = 2 0sec ttax,则taaxtan 22 =,tdttadxtansec=,于是 (

26、) =tdttatdtttaadxaxsectantansectan 4433 3 22 () +=tdttdttdttdttdtttsecsec2secsec1secsectan 35 2 24 () += 1 35 tanseclntansec 8 3 tansec 4 1 secCtttttttdt () 2 3 tanseclntansec 2 1 secCtttttdt+= ;+= 3 tanseclnsecCtttdt ()+=+= tttttttttdttdttdttdtttan(sec 2 1 2tanseclntansec 8 3 tansec 4 1 secsec2secs

27、ectan 335 4 a ax a x a ax a x a ax a x CCCtttt 222222 3 3 321 ln 8 3 8 5 4 1 2tansecln)tansecln + =+ 321 2CCC+ ()()Caxxaaxax x Caxxaaxx a ax x dxax+=+= 224222222422 2 22 3 3 22 ln 8 3 52 8 ln 8 3 8 5 4 55.dxaxx 22 ,设 = 2 0sec ttax,则taaxtan 22 =,tdttadxtansec=,于是 = = t dt a t dt adt t t atdttatdttata

28、tadxaxx 2 3 4 3 4 2 322322 coscoscos cos1 sectantansectansec ()()CaxCt a tatdtatattda+=+=+= 3 223 3 323323 3 1 tan 3 tantantan1tantansec 56.()() 22 2 22422222222222222 2 ln 8 3 52 8 axx a axxaaxax x dxaxadxaxaxdxaxx+=+= ()Caxx a axax x Caxx a +=+ 22 4 222222 4 ln 8 2 8 ln 2 57.dx x ax 22 , 设 x时,有 高等

29、数学积分表推导过程 高等数学积分表推导过程 ()C x a axCttadttatdtatdtta ta ta dx x ax +=+= arccostan1sectantansec sec tan 2222 22 当0x时,有C x a axdx x ax + = arccos)( 22 22 ;综上所述,C x a axdx x ax += arccos 22 22 58.dx x ax 2 22 ,设 aax的积分 59.C a x a x dx a xa dx += = arcsin 1 1 222 60. () 3 22 xa dx ,令 = 22 sin ttax,则()taxa

30、33 3 22 cos=,tdtadxcos=,于是 () + =+= C xaa x Ct at dt dt ta ta xa dx 222 2233 3 22 tan 1 coscos cos 61. 22 xa dx ,令 = 22 sin ttax,则taxacos 22 =,tdtadxcos=,于是 += Cxatatdtatdta ta ta xa dx 22 22 cossincos cos sin 62. () 3 22 xa xdx ,令 = 22 sin ttax,则()taxa 33 3 22 cos=,tdtadxcos=,于是 () + =+= C xa C ta

31、dt t t a tdta ta ta xa xdx 22 233 3 22 1 cos 1 cos sin1 cos cos sin 63. 22 2 xa dxx ,令 = 22 sin ttax,则taxacos 22 =,tdtadxcos=,于是 高等数学积分表推导过程 高等数学积分表推导过程 Cxa x a xa Ct a tatdtatdta ta ta xa dxx +=+= 22 22 222 22 22 2 2 arcsin 2 2sin 42 1 sincos cos sin 64. () 3 22 2 xa dxx ,令 = 22 sin ttax,则()taxa 33

32、 3 22 cos=,tdtadxcos=,于是 () C a x xa x Cttdt t dt tdta ta ta xa dxx + =+= arcsintan cos cos cos sin 22 233 22 3 22 2 65. 22 xax dx ,令 = 22 sin ttax,则taxacos 22 =,tdtadxcos=,于是 C x xaa a C x xa a x a Ctt a dt tta ta xax dx + =+ =+= 2222 2 22 ln 1 ln 1 cotcscln 1 cossin cos 66. 222 xax dx ,令 = 22 sin

33、ttax,则taxacos 22 =,tdtadxcos=,于是 C xa xa Ct at dt attaa tdta xax dx + =+= 2 22 22222 222 cot 1 sin 1 cossin cos 67.dxxa 22 ,令 = 22 sin ttax,则taxacos 22 =,tdtadxcos=,于是 Cxa x a xa Ct a t a dt t atdtatdtatadxxa+=+= + = 22 222 22222 2 arcsin 2 2sin 422 2cos1 coscoscos 68.()dxxa 3 22 ,令 = 22 sin ttax,则(

34、)taxa 33 3 22 cos=,tdtadxcos=,于是 () () =+= + = dtt a tdt ata dt t atdtatdtatadxxa2cos 4 2cos 244 2cos1 coscoscos 2 444 2 44433 3 22 () =+ +=+C xaxax xax a a x aCt ata t a a xa 8 2 2 arcsin 8 3 4sin 328 2sin 4 arcsin 4 2222 22 2 4 4444 ()C a x axaxa x +arcsin 8 3 25 8 42222 69.dxxax 22 ,令 = 22 sin tt

35、ax,则taxacos 22 =,tdtadxcos=,于是 ()CxaCt a ttdatdtatatadxxax+=+= 3 223 3 2322 3 1 cos 3 coscoscoscossin 高等数学积分表推导过程 高等数学积分表推导过程 70.dxxax 222 ,令 = 22 sin ttax,则taxacos 22 =,tdtadxcos=,于是 () =tdtatdtadtttatdttatdtatatadxxax 442422422422222 sinsinsin1sincossincoscossin () + =+= =dt ta t a tdt a t a tat a

36、 tadt t adt t a 2 4cos1 44 2cos 4 2sin 44 1 2sin 42 1 4 2cos1 2 2cos1 44 2 44 4 4 4 2 44 ()Cxaxa x a xa Ct a t a +=+= 2222 444 2 8 arcsin 8 4sin 328 71.dx x xa 22 ,令 = 22 sin ttax,则taxacos 22 =,tdtadxcos=,于是 =+= = Ctattatdta t dt adt t t atdttatdta ta ta dx x xa coscotcsclnsin sinsin sin1 coscotcos

37、sin cos 222 Cxa x xaa aC a xa a x xa x a a+ =+ + 22 222222 lnln 72.dx x xa 2 22 ,令 +acbxax的积分 73. + + = + 2 2 22 42 1 a b a c a b x dx a cbxax dx ,令t a b x=+ 2 ,则dtdx = 当04 2 acb时,则令()0 4 4 2 2 2 = uu a acb ,则 = + + = + 22 2 2 22 1 42 1 ut dt a a b a c a b x dx a cbxax dx 再令rutsec=,rdrrudtsectan=,ru

38、uttan 22 =,于是 += 1 22 tansecln 1 sec 1 tan sectan11 Crr a rdr a dr ru rru a ut dt a acb bax a acb a b x u t r 4 2 4 4 2 sec 2 2 2 + = + = ; acb cbxaxa u ut r r r 4 1 2 cos cos1 tan 2 2 222 += = = 高等数学积分表推导过程 高等数学积分表推导过程 Ccbxaxabax a C acb cbxaxabax a cbxax dx +=+ + = + 2 1 2 2 2 22ln 1 4 22 ln 1 当04

39、 2 acb时,令 a b xt 2 +=,u a acb = 2 4 2 =+dtutadxcbxax 222 ,再令rutsec=,rdrrudttansec= ()Crruarrrruardrruadtuta+= tanseclntanseclntansec 2 1 sectan 222222 + + =+= acb cbxaxa acb bax a acb aCrruarrua 4 1 2 4 2 2 4 2 1 tansecln 2 1 tansec 2 1 2 2 2 2 2 1 22 Ccbxaxabax a bac cbxax a bax C acb cbxaxabax a a

40、cba + + + =+ + 2 3 2 2 1 2 2 2 2 22ln 8 4 4 2 4 22 ln 4 4 2 当04 2 时,令 2 2 4 4 a bac u = 1 22 22 2222222 ln 22 1 2 1 Cutt aa b a ut uta dt a b dt ut t a dt ut a b t a cbxax xdx + = = = + Ccbxaxabax aa b a cbxax C a c x a b x a b x aa b a c x a b x a + + =+= 2 2 1 22 22ln 22 ln 2 1 当0= u ab ; 2 ba tr

41、+=则 () C ab bax ru dr ba t ba dt + = = + 2 arcsin 24 222 2 82.()() dxxbax;令tax=;则tax+=;dtdx =;于是()() () + =dt ba t ba dxxbax 2 2 24 令0 2 = u ab ; 2 ba tr +=;则()() 4 2 arcsin 22 2 2222 bax C u ru ru r drrudxxbax =+= ()() () C ab baxab dxxbax+ + 2 arcsin 8 2 (十一)含有三角函数的积分 83.+=Cxxdxcossin 84.+=Cxxdxsi

42、ncos 85. +=Cxdx x x xdxcosln cos sin tan 86. +=Cxdx x x xdxsinln sin cos cot 87.C x x x d xx x d xx xd x dx xdx+ += + + = + + + = + + + = 42 tanln 42 tan 42 tan 42 cos 42 tan 42 2 cos 2 sin2 2 cos sec 2 xx x x x x x x x cotcsc sin cos1 sin 2 sin2 2 cos 2 sin 2 tan 2 = = ; =+ + += Cxxxdx 2 cot 2 cscl

43、nsec Cxx+ tansecln 88.CxxC x x x d xx dx xx dx x dx xdx+=+= cotcscln 2 tanln 2 tan 2 tan 2 cos 2 tan 2 cos 2 sin2 sin csc 2 89.Cxxdx+= tansec2 90.Cxxdx+= cotcsc2 91.+=Cxxdxxsectansec 92.+=Cxxdxxcsccotcsc 高等数学积分表推导过程 高等数学积分表推导过程 93.Cx x dx x xdx+= = 2sin 4 1 22 2cos1 sin2 94.Cx x dx x xdx+= + = 2sin

44、4 1 22 2cos1 cos2 95.() +=+=xdxxnxxxdxxdxxxxdxdx nnnnnn221111 cossin1sincossincossincoscossinsin ()()()() +=+= xdxnxdxnxxxdxxnxx nnnnn sin1sin1sincossinsin11sincos 21221 +=xdx n n xx n xdx nnn21 sin 1 sincos 1 sin 96.()+=+= xxxdxxnxxxxdxxxxdxdx nnnnnnn1221111 cossincossin1cossincossincossinsincoscos ()()()() += xdxnxdxnxxxdxxn nnnn cos1cos1cossincoscos11 2122 +=xdx n n xx n xdx nnn21 cos 1 c

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(高等数学积分表推导全过程(完美打印版) (1).pdf)为本站会员(汀枫)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|