1、黄冈黄冈市高三市高三 9 月调考数学月调考数学参考答案及评分标准参考答案及评分标准 一、单项选择题 1. C 2.B 3. B 4. D 5. A 6. C 7. B 8. C 二、多项选择题 9. B D 10.A B 11. A C D 12. A B C 三、填空题 13.(,0)(e,) 14. 21 n an 15. 2020 16. 50 四、解答题 17.(1) 选择条件选择条件: 依题意,( )f x相邻两对称轴之间距离为 2 ,则周期为,从而2, 2 分 1 ( )sin(2) 2 f xx, 1 ( )sin(2) 26 g xx, 又,( )g x的图像关于原点对称,则(
2、0)0g,由 | 2 知 6 , 4 分 从而 1 ( )sin(2) 26 f xx, 1 ( ) 62 f 5 分 选择条件选择条件: 依题意, 31 ( )sincoscos 2224 f xm nxxx 2 分 即有: 311 ( )sincos=sin() 4426 f xxxx 又因为( )f x相邻两对称轴之间距离为 2 ,则周期为,从而2, 4 分 从而 1 ( )sin(2) 26 f xx, 1 ( ) 62 f 5 分 选择条件选择条件: 依题意, 1 ( )cossin() 2264 f xxx 即有: 311 ( )cos(sincos) 222224 f xxxx
3、2 分 化简得: 2 311 ( )sincos(cos) 222224 f xxxx 即有: 311 ( )sincos=sin() 4426 f xxxx 又因为( )f x相邻两对称轴之间距离为 2 ,则周期为,从而2, 4 分 从而 1 ( )sin(2) 26 f xx, 1 ( ) 62 f 5 分 (2) 1 ( )sin(2) 26 f xx,则其单调递减区间为 3 2 22 , 262 kxkkz, 解得 2 , , 63 xkkkz , 令0k ,得 2 , 6 3 x , 从而( )f x在0,上的单调递减区间为 2 , 6 3 . 10 分 18.(1)由 3 11 2
4、23103 C PPPPPP B知, 311223103 1 11 C PPPP PP Bb, 从而有: 133 1 1 3 11 APACC Pab , 2332 2 3 11 APACC Pab 3333 3 3 11 APACC Pab 4 分 (2)由(1)同理可得:3 11 i i APab 从而 1210 APAPAP 1 30(1210)305 11 abab 8 分 2 2ABab 从而 1010 22 11 ()( 2) ( 305 )45 ii ii ABAPABAPabab 12 分 19.(1) 1 (1)1 nn nana ,两边同时除以(1)n n 得: 1 11
5、11 nn aa nnnn 2 分 从而有: 1 11 11 nn aa nnnn , 21 1 1 212 aa 叠加可得: 1 1 1 1 n aa nn , 21(2) n ann 又=1n满足等式,从而 21 n an 6 分 (2) 21 2 n n n b , 23 13521 2222 n n n S 23+1 1132321 + 22222 n nn nn S 即有: 23+1 1122221 222222 n nn n S 即有: 23 3 2 n n n S 12 分 20. (1) 3 2 ( )( 3sincos)3 3 x f xCC xx 2 ( )2( 3sinc
6、os)3fxxCC x, 依题意,有: 2 ( )4 sin()31 6 fcccC 从而有: 2 4 sin()40 6 ccC 4 分 由0 知: sin()1, 6 C 即有: ,2 3 Cc .6 分 (2) 方法一: 依正弦定理, 有 4 ,sin sin3 sin 3 ac aA A 同理 42 sin() 33 bA 从而有: 14 32 sinsinsin() 233 ABC SabCAA , (,) 6 2 A8 分 2 4 331 sincossin 322 ABC SAAA 2 3 23 s i nc o s2 s i n 3 AAA 3 3 s i n 21c o s
7、2 3 AA 2 33 sin(2)3 363 A 当且仅当 3 A 时,取到最大值,因此,ABC的面积最大值为3.12 分 方法二:由余弦定理得 22222 2cos4,cababCabab ,当且仅当2ab时等号成立. 13 sin3. 24 ABC SabCab 21.(1)作OEBC,垂足为E,在直角三角形OBE中, sinsin 22 BEOB , 22 4ababab 则有2sin 2 BCAD , 2 分 同理作OFCD,垂足为F,coscosCFOC, 即:2cosCD, 4 分 从而有: 22 1 24sin2cos4sin4sin44(sin)5 22222 l 当 3 时
8、,l取最大值 5,即观光通道长l的最大值为 5km. 6 分 (2)依题意, 111 sin ,sin2 222 AODCODOBC SSS 扇形 , 8 分 则总利润 1 ( )sin +sin2 + 2 S9 分 11 ( )cos +2cos2 +(4cos3)(2cos1) 22 S 10 分 因为 (0,) 2 ,所以当 (0) 3 ,时,( )S单调递增,当 () 3 2 ,时,( )S单调递减,从而 当 = 3 时,总利润取得最大值,最大值为 ( 3) 6 S 百万元 12 分 22.(1)( )e ,( )(1)e xx f xxfxx 当1x 时,( )0fx ,当 1x 时
9、,( )0fx. 从而( )f x的单调递增区间为1, ,单调递减区间为, 1 . 4 分 (2)ex , ( )0g x 恒成立,即 1 3 2ln()e0 m x xxmx 恒成立 当0m时,显然成立; 6 分 当0m时,即 1 2 2ln(1)e0 m x m xx x 恒成立 即 1 22 ln(1)e0 m x m xx x 恒成立,即 1 22 ln(1)e m x m xx x 即 2 (ln)(1) m fxf x 8 分 由0m知,11 m x ,由可知, 2 (ln)(1) m fxf x 2 ln1 m x x 即:2 lnmxxx.令( )2 ln,eh xxxx x ( )32ln0h xx,即( )h x在)e,+x违上为增函数, min ( )(e)3eh xh,03 ,me 综上,,3em . 12 分