2020新人教A版数学必修一3.1函数及其表示 学生版.doc

上传人(卖家):DOC 文档编号:803714 上传时间:2020-10-20 格式:DOC 页数:13 大小:351KB
下载 相关 举报
2020新人教A版数学必修一3.1函数及其表示 学生版.doc_第1页
第1页 / 共13页
2020新人教A版数学必修一3.1函数及其表示 学生版.doc_第2页
第2页 / 共13页
2020新人教A版数学必修一3.1函数及其表示 学生版.doc_第3页
第3页 / 共13页
2020新人教A版数学必修一3.1函数及其表示 学生版.doc_第4页
第4页 / 共13页
2020新人教A版数学必修一3.1函数及其表示 学生版.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、函数及其表示函数及其表示 【要点梳理】【要点梳理】 要点一、函数的概念要点一、函数的概念 1函数的定义函数的定义 设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:AB 为从集合 A 到集合 B 的一个函数. 记作:y=f(x),xA 其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函 数值的集合f(x)|xA叫做函数的值域. 要点诠释要点诠释: (1)A、B 集合的非空性; (2)对应关系的存在性、唯一性、确定性; (3)A 中元素的

2、无剩余性; (4)B 中元素的可剩余性。 2构成函数的三要素:定义域、对应关系和值域构成函数的三要素:定义域、对应关系和值域 构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全致,即称这两个函数相等(或为同一函数); 两个函数相等当且仅当它们的定义域和对应关系完全致,而与表示自变量和函数值的字母无关. 3区间的概念区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示 区间表示: |( , );x axba b x|axb=a,b; |,x axba b; |,xaxba b;

3、 |- ,; |,x xbbx axa. 要点二、函数的表示法要点二、函数的表示法 1函数的三种表示方法:函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系 优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系 优点:不需计算就可看出函数值. 2分段函数:分段函数: 分段函数的解析式不能写成几个不同的方程, 而应写函数几种不同的表达式并用个左大括号括起来, 并分别注明各部分的自变量的取值情况 要点三、映射与函数要点三、映射与函数 1.映射定义:映射定义: 设 A、B 是两个非空集

4、合,如果按照某个对应法则 f,对于集合 A 中的任何一个元素,在集合 B 中 都有唯一的元素和它对应,这样的对应叫做从 A 到 B 的映射;记为 f:AB. 象与原象:如果给定一个从集合 A 到集合 B 的映射,那么 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象,a 叫做 b 的原象. 要点诠释:要点诠释: (1)A 中的每一个元素都有象,且唯一; (2)B 中的元素未必有原象,即使有,也未必唯一; (3)a 的象记为 f(a). 2.函数与映射的区别与联系:函数与映射的区别与联系: 设 A、B 是两个非空数集,若 f:AB 是从集合 A 到集合 B 的映射,这个映射叫做从集合

5、A 到集 合 B 的函数,记为 y=f(x). 要点诠释:要点诠释: (1)函数一定是映射,映射不一定是函数; (2)函数三要素:定义域、值域、对应法则; (3)B 中的元素未必有原象,即使有原象,也未必唯一; (4)原象集合=定义域,值域=象集合. (5)如果 A 有 m 个元素,B 有 n 个元素,则从集合 A 中到集合 B 的映射(不加限制)有有 m n 个个。 3.函数定义域的求法函数定义域的求法 (1)确定函数定义域的原则 定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号 的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的

6、所有有意义的限制条 件. (2)抽象函数定义域的确定 注意 1:不管括号中的形式多复杂,定义域只是自变量x的取值集合。 注意 2:在同一函数f作用下,括号内整体的取值范围相同。 4.函数值域的求法函数值域的求法 实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完 全确定了,但求值域还是特别要注意讲究方法,常用的方法有: 观察法:观察法: 通过对函数解析式的简单变形, 利用熟知的基本函数的值域, 或利用函数的图象的“最高点” 和“最低点”,观察求得函数的值域; 配方法:配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二 次函

7、数的值域方法求函数的值域; 判别式判别式法:法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些“分式”函 数等;此外,使用此方法要特别注意自变量的取值范围; 换元法:换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本 函数的取值范围来求函数的值域. 求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法最值法、数形结合法数形结合法等. 总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约. 【典型例题】【典型例题】 类型一、函数的概念类型一、函数的概念 例 1.已知集合1,2,3A,4,5B ,则从

8、A到B的函数( )f x有 个. 举一反三:举一反三: 【变式 1】下列各问的对应关系是否是给出的实数集R上的一个函数?为什么? (1):fx 2 ,0,xxR x ; (2):gxy, 2 ,yx xN yR; (3):h * ABN,对任意的,xA|3|xx. 例 2下列函数 f(x)与 g(x)是否表示同一个函数,为什么? (1) 0 ) 1x()x(f;1)x(g (2)x)x(f; 2 x)x(g (3) 2 x)x(f; 2 ) 1x()x(g (4)|x|)x(f; 2 x)x(g 举一反三:举一反三: 【变式 1】判断下列命题的真假 (1)y=x-1 与 1x 1x y 2 是

9、同一函数; (2) 2 xy 与 y=|x|是同一函数; (3) 233 )x(y)x(y与是同一函数; (4) )0 x(xx )0 x(xx )x(f 2 2 与 g(x)=x2-|x|是同一函数. 类型二、函数定义域的求法类型二、函数定义域的求法 例 3.求下列函数的定义域(用区间表示). (1) 2 -1 ( ) -3 x f x x ; (2)( )3 -8f xx; (3) 1 ( )2- 6 f xx x . 举一反三:举一反三: 【变式 1】求下列函数的定义域(用区间表示) : (1) 3 f(x) |x 1| 2 ; (2) 1 f(x)x3 x1 ; (3)( )1f xx

10、x. 例 4.(1)已知函数 y=f(x)的定义域为1,2,求函数 y=f(1x2)的定义域 (2)已知函数 y=f(2x3)的定义域为(2,1,求函数 y=f(x)的定义域 举一反三:举一反三: 【变式 1】已知(1)f x的定义域为2,3,求 1 (2)f x 的定义域. 例 5.已知函数 32 1 43 ax y axax 的定义域为R,求实数a的取值范围. 类型三、求函数的值及值域类型三、求函数的值及值域 例 6. 已知 f(x)=2x2-3x-25,g(x)=2x-5,求: (1)f(2),g(2); (2)f(g(2),g(f(2); (3)f(g(x),g(f(x) 例 7. 求

11、值域(用区间表示):(1)y=x2-2x+4,4, 1x ;2,3x ; 2 -2 (2) ( )-23; (3) ( ) 3 x f xxxf x x . 举一反三:举一反三: 【变式 1】 求下列函数的值域: (1)1yx; (2) 21 3 x y x ; (3) 2 2 1 1 x y x ; (4) 2 54yxx 类型四、映射与函数类型四、映射与函数 例 8. 判断下列对应哪些是从集合 A 到集合 B 的映射,哪些是从集合 A 到集合 B 的函数? (1)A=直角坐标平面上的点,B=(x,y)|,xR yR,对应法则是:A 中的点与 B 中的(x, y)对应 (2)A=平面内的三角

12、形,B=平面内的圆,对应法则是:作三角形的外接圆; (3)A=N,B=0,1,对应法则是:除以 2 的余数; (4)A=0,1,2,B=4,1,0,对应法则是 f: 2 xyx (5)A=0,1,2,B=0,1, 1 2 ,对应法则是 f: x 1 yx 举一反三:举一反三: 【变式 1】判断下列对应是否是实数集 R 上的函数: (1)f:把 x 对应到 3x+1; (2)g:把 x 对应到|x|+1; (3)h:把 x 对应到 1 25x ; (4)r:把 x 对应到36x 类型五、函数解析式的求法类型五、函数解析式的求法 例 9.求函数的解析式 (1)已知( )f x是二次函数,且(0)2

13、, (1)( )1ff xf xx,求( )f x; (2)若 f(2x-1)=x2,求 f(x); (3)已知3 ( )2 ()3f xfxx,求( )f x. 举一反三:举一反三: 【变式】求下列函数( )f x的解析式 (1)已知 2 2 1 1 2()= x fx x ,求( )f x; (2)已知 1 592( )()=ff x xx,求( )f x 类型六、函数的图象类型六、函数的图象 例 10.作出下列函数的图象. (1)1( 21012)yx x , , , ,; (2) 21 1 x y x ; (3) 2 |2 | 1yxx 类型七、分段函数类型七、分段函数 例 11.设函

14、数 2 2 220 0 xx,x, f x x ,x. 若 2ff a,则a= 举一反三:举一反三: 【变式 1】如图,在边长为 4 的正方形ABCD的边上有一点P,沿着边线BCDA 由B(起点)向A(终点)运动.设点P运动的路程为x,APB的面积为y. (1)求y与x之间的函数关系式; (2)画出( )yf x的图象. 【巩固练习】【巩固练习】 1函数1yxx的定义域是( ) A|1x x B|0 x x C|10 x xx或 D|01xx 2函数 2 43,0,3yxxx的值域为 ( ) A0,3 B-1,0 C-1,3 D0,2 3对于集合 A 到集合 B 的映射,有下述四个结论: B

15、中的任何一个元素在 A 中必有原象; A 中的不同元素在 B 中的象也不同; A 中任何一个元素在 B 中的象是唯一的; A 中任何一个元素在 B 中可以有不同的象 其中正确结论的个数是( ) A1 个 B2 个 C3 个 D4 个 4设|02 ,|12MxxNyy,给出下列四个图形,如下图所示,其中能表示从集 合M到N的函数关系的有 ( ) A1 个 B2 个 C3 个 D4 个 5设函数 2 , 0, ( ) 1, 0, xx f x xx 则)1(ff的值为( ) A2 B1 C1 D2 6已知 f(x21)定义域为0,3,则 f(2x1)的定义域为( ) A 9 (0, ) 2 B 9

16、 0, 2 C 9 (, ) 2 D 9 (, 2 7向高为H的水瓶里注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么 水瓶的形状是图中的( ) 8已知函数 2 2 ( ) 1 x f x x ,则: 1111 (1)(2)( )(3)( )(4)( )(2010)() 2342010 fffffffff的值是( ) A2008 B2009 C 1 2009 2 D 2010 9若( )yf x的定义域是0,1,则( )()(2) 01F xf xafxaa的定义域是 10已知 0, 1 0, 1 )( x x xf,则不等式(2)(2)5xxf x的解集是 11若函数 2 xb y x 在(a,a+6) (b2)上的值域为(2,+) ,则 a+b=_ 12 已知 * , a bN,()( ) ( ),(1)2,f abf a f bf则 (2)(3)(4)(2011) (1)(2)(3)(2010) ffff ffff = 13当m为何值时,方程 2 4| 5,xxm (1)无解; (2)有两个实数解; (3)有三个实数解; (4)有四个实数解

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 人教A版 >
版权提示 | 免责声明

1,本文(2020新人教A版数学必修一3.1函数及其表示 学生版.doc)为本站会员(DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|