浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc

上传人(卖家):知识图书馆 文档编号:8152782 上传时间:2024-12-12 格式:DOC 页数:21 大小:757.54KB
下载 相关 举报
浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc_第1页
第1页 / 共21页
浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc_第2页
第2页 / 共21页
浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc_第3页
第3页 / 共21页
浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc_第4页
第4页 / 共21页
浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件中,属于必然事件的是( )A三角形的外心到三边的距离相等B某射击运动员射击一次,命中靶心C任意画一个三角形,其内角和是 180D抛一枚硬币,落地后正面朝上2为了解中学300名男生的身

2、高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图)估计该校男生的身高在169.5cm174.5cm之间的人数有( )A12B48C72D963为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A选科目E的有5人B选科目A的扇形圆心角是120C选科目D的人数占体育社团人数的D据此估计全校1000名八年级同学,选择科目B的有140人4已知BAC=45。,一动点O在射线A

3、B上运动(点O与点A不重合),设OA=x,如果半径为1的O与射线AC有公共点,那么x的取值范围是( )A0x1B1xC0xDx5小明解方程的过程如下,他的解答过程中从第()步开始出现错误解:去分母,得1(x2)1去括号,得1x+21合并同类项,得x+31移项,得x2系数化为1,得x2ABCD6下列交通标志是中心对称图形的为()ABCD7衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程

4、为ABCD8如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()ABCD9若代数式有意义,则实数x的取值范围是( )Ax0Bx2Cx0Dx210下列实数中是无理数的是()AB22C5.Dsin4511如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转中心,将OAB按顺时针方向旋转60,得到OAB,那么点A的坐标为()A(2,2)B(2,4)C(2,2)D(2,2)12下列说法正确的是()A某工厂质检员检测某批灯泡的使用寿命采用普查法B已知一组数据1,a,4

5、,4,9,它的平均数是4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是二、填空题:(本大题共6个小题,每小题4分,共24分)13在函数中,自变量x的取值范围是 14小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_15如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58,则BCD的度数是_16四张背面完全相同的卡片上分别写有0、四个实数,如果将卡片字面朝下

6、随意放在桌子上,任意取一张,那么抽到有理数的概率为_17如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP/AB,则AB的长等于_18已知关于x的二次函数yx22x2,当axa2时,函数有最大值1,则a的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为m求m的值;求|m1|+(m+6)0的值20(6分)如图,一次函数y1kxb(k0)和反比例函数y2(m0)的图象交于点A(1,6

7、),B(a,2)求一次函数与反比例函数的解析式;根据图象直接写出y1y2 时,x的取值范围21(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;22(8分)如图,在RtABC中,点在边上,点为垂足,DAB=450,tanB=.(1)求的长;(2)求的余弦值23(8分)如图,在平面直角坐标系中,抛物线yx2mxn经过点A(3,0)、B(0,3),点P是直线

8、AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t分别求出直线AB和这条抛物线的解析式若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由24(10分)如图,在ABC中,点D,E分别在边AB,AC上,且BE平分ABC,ABE=ACD,BE,CD交于点F(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CDAB,AD=2,BD=3,求线段EF的长25(10分)已知关于x的一元二次方程x2(2m+3)x+m2+21(1)若方程

9、有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x2231+|x1x2|,求实数m的值26(12分)如图,AB是O的直径,点C是O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分ACB,交AB点F,连接BE(1)求证:AC平分DAB;(2)求证:PCPF;(3)若tanABC,AB14,求线段PC的长27(12分)计算:(1)42tan60+ 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断

10、详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、C【解析】解:根据图形,身高在169.5cm174.5cm之间的人数的百分比为:

11、,该校男生的身高在169.5cm174.5cm之间的人数有30024%72(人)故选C3、B【解析】A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用360判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定【详解】解:调查的学生人数为:1224%=50(人),选科目E的人数为:5010%=5(人),故A选项正确,选科目A的人数为50(7+12+10+5)=16人,选科目A的扇形圆心角是360=115.2,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校10

12、00名八年级同学,选择科目B的有1000=140人,故D选项正确;故选B【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息4、C【解析】如下图,设O与射线AC相切于点D,连接OD,ADO=90,BAC=45,ADO是等腰直角三角形,AD=DO=1,OA=,此时O与射线AC有唯一公共点点D,若O再向右移动,则O与射线AC就没有公共点了,x的取值范围是.故选C.5、A【解析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题【详解】=1,去分母,得1-(x-2)=x,故错误,故选A【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法6

13、、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合7、A【解析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选:【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系8

14、、B【解析】俯视图是从上面看几何体得到的图形,据此进行判断即可【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形9、D【解析】根据分式的分母不等于0即可解题.【详解】解:代数式有意义,x-20,即x2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.10、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项

15、错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D11、D【解析】分析:作BCx轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A与点B重合,于是可得点A的坐标详解:作BCx轴于C,如图,OAB是边长为4的等边三角形 A点坐标为(4,0),O点坐标为(0,0),在RtBOC中, B点坐标为 OAB按顺时针方向旋转,得到OAB, 点A与点B重合,即点A的坐标为 故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.12、B【解析】分别用方差、全面调查与抽样调查

16、、随机事件及概率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、

17、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.二、填空题:(本大题共6个小题,每小题4分,共24分)13、。【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须。14、0.7【解析】用通话时间不足10分钟的通话次数除以通话的总次数即可得【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),通话时间不足10分钟的通话次数的频率是3550=0.7.故答案为0.7.15、32【解析】根据直径所对的圆周角是直角得到ADB=90,

18、求出A的度数,根据圆周角定理解答即可【详解】AB是O的直径,ADB=90,ABD=58,A=32,BCD=32,故答案为3216、【解析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】在0.、这四个实数种,有理数有0.、这3个,抽到有理数的概率为,故答案为【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=17、 【解析】设CD=AB=a,利用勾股定理可得到RtCDE中,DE2=CE2-CD2=1-2a2,RtDEP中,DE2=PD2-PE2=1-2PE,进而得出PE=

19、a2,再根据DEPDAB,即可得到,即,可得,即可得到AB的长等于【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,由折叠可得,CE=BC,BP=EP,CE2=1-a2,RtCDE中,DE2=CE2-CD2=1-2a2,PEAB,A=90,PED=90,RtDEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,PE=a2,PEAB,DEPDAB,即,即a2+a-1=0,解得(舍去),AB的长等于AB=.故答案为.18、1或1【解析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当axa+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结

20、论【详解】解:当y=1时,x2-2x-2=1,解得:x1=-1,x2=3,当axa+2时,函数有最大值1,a=-1或a+2=3,即a=1故答案为-1或1【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)2- ;(2)【解析】试题分析: 点表示 向右直爬2个单位到达点,点表示的数为 把的值代入,对式子进行化简即可试题解析: 由题意点和点的距离为,其点的坐标为 因此点坐标把的值代入得: 20、(1)y12x4,y2;(2)x1或0x

21、1【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(a,2)代入得:,a=1,B(1,2),将A(1,6),B(1,2)代入一次函数y1=kx+b得:,;(2)由函数图象可得:x1或0x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键21、 (1)1;(2) 【解析】(1)设口袋中黄球的个数为x个,

22、根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1 经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得: 共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件22、 (1)3;(2)

23、【解析】分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可; (2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BCBD求出CD的长,利用锐角三角函数定义求出所求即可详解:(1)DEAB,DEA=90又DAB=41,DE=AE在RtDEB中,DEB=90,tanB=,设DE=3x,那么AE=3x,BE=4xAB=7,3x+4x=7,解得:x=1,DE=3; (2)在RtADE中,由勾股定理,得:AD=3,同理得:BD=1在

24、RtABC中,由tanB=,可得:cosB=,BC=,CD=,cosCDA=,即CDA的余弦值为点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键23、 (1)抛物线的解析式是.直线AB的解析式是.(2) .(3)P点的横坐标是或.【解析】(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22

25、t3)=t2+3t,然后根据二次函数的最值得到当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足条件的t的值【详解】解:(1)把A(3,0)B(0,-3)代入,得解得所以抛物线的解析式是.设直线AB的解析式是,把A(3,0)B(0,)代入,得解得所以直线

26、AB的解析式是.(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时=.(3)若存在,则可能是:P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.P在第一象限平行四边形OBPM: PM=OB=3,解得,(舍去),所以P点的横坐标是.P在第三象限平行四边形OBPM:PM=OB=3,解得(舍去),所以P点的横坐标是.所以P点的横坐标是或.24、(1)证明见解析;(2)DE=CE,理由见解析;(3) 【解析】试题分析:(1)证明ABEACD,从而得出结论;(2) 先证明CDE=ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)A

27、BE=ACD,A=A,ABEACD,;(2),又A=A,ADEACB,AED=ABC,AED=ACD+CDE,ABC=ABE+CBE,ACD+CDE=ABE+CBE,ABE=ACD,CDE=CBE,BE平分ABC,ABE=CBE,CDE=ABE=ACD,DE=CE;(3)CDAB,ADC=BDC=90,A+ACD=CDE+ADE=90,ABE=ACD,CDE=ACD,A=ADE,BEC=ABE+A=A+ACD=90,AE=DE,BEAC,DE=CE,AE=DE=CE,AB=BC,AD=2,BD=3,BC=AB=AD+BD=5,在RtBDC中,在RtADC中,ADC=FEC=90, 25、(1)

28、m;(2)m2【解析】(1)利用判别式的意义得到(2m+3)24(m2+2)1,然后解不等式即可;(2)根据题意x1+x22m+3,x1x2m2+2,由条件得x12+x2231+x1x2,再利用完全平方公式得(x1+x2)23x1x2311,所以2m+3)23(m2+2)311,然后解关于m的方程,最后利用m的范围确定满足条件的m的值【详解】(1)根据题意得(2m+3)24(m2+2)1,解得m;(2)根据题意x1+x22m+3,x1x2m2+2,因为x1x2m2+21,所以x12+x2231+x1x2,即(x1+x2)23x1x2311,所以(2m+3)23(m2+2)311,整理得m2+1

29、2m281,解得m114,m22,而m;所以m2【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,灵活应用整体代入的方法计算26、(1)(2)证明见解析;(3)1【解析】(1)由PD切O于点C,AD与过点C的切线垂直,易证得OCAD,继而证得AC平分DAB;(2)由条件可得CAO=PCB,结合条件可得PCF=PFC,即可证得PC=PF;(3)易证PACPCB,由相似三角形的性质可得到 ,又因为tanABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在RtPOC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程

30、求出k的值即可求出PC的长【详解】(1)证明:PD切O于点C,OCPD,又ADPD,OCAD,ACO=DACOC=OA,ACO=CAO,DAC=CAO,即AC平分DAB;(2)证明:ADPD,DAC+ACD=90又AB为O的直径,ACB=90PCB+ACD=90,DAC=PCB又DAC=CAO,CAO=PCBCE平分ACB,ACF=BCF,CAO+ACF=PCB+BCF,PFC=PCF,PC=PF;(3)解:PAC=PCB,P=P,PACPCB,又tanABC=,设PC=4k,PB=3k,则在RtPOC中,PO=3k+7,OC=7,PC2+OC2=OP2,(4k)2+72=(3k+7)2,k=6 (k=0不合题意,舍去)PC=4k=46=1【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质27、1【解析】首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案解:原式=1“点睛”此题主要考查了实数运算,正确化简各数是解题关键,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 模拟试题
版权提示 | 免责声明

1,本文(浙江省温州市八校2022-2023学年中考数学押题试卷含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|