1、2024年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D652若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D253一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20的方向行60海里到达点M处,同一时刻
2、渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则NOF的度数为( )A50B60C70D804如图,二次函数y=ax1+bx+c(a0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC则下列结论:abc0;9a+3b+c0;c1;关于x的方程ax1+bx+c=0(a0)有一个根为;抛物线上有两点P(x1,y1)和Q(x1,y1),若x11x1,且x1+x14,则y1y1其中正确的结论有()A1个B3个C4个D5个5如图,AB是的直径,点C,D在上,若,则的度数为ABCD6已知直线mn,将一块含30角的直角三角板ABC按如图方式放置(
3、ABC=30),其中A,B两点分别落在直线m,n上,若1=20,则2的度数为()A20B30C45D507如图,直线ab,直线c与直线a、b分别交于点A、点B,ACAB于点A,交直线b于点C如果1=34,那么2的度数为( )A34B56C66D14682017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%数据3122亿元用科学记数法表示为()A312210 8元B3.12210 3元C312210 11 元D3.12210 11 元9
4、一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限102016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )A0.334 B C D二、填空题(共7小题,每小题3分,满分21分)11如图,正方形ABCD边长为3,连接AC,AE平分CAD,交BC的延长线于点E,FAAE,交CB延长线于点F,则EF的长为_12如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为
5、_13如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30在图中画出弦AD,使AD=1,则CAD的度数为_14求1+2+22+23+22007的值,可令s=1+2+22+23+22007,则2s=2+22+23+24+22018,因此2ss=220181,即s=220181,仿照以上推理,计算出1+3+32+33+32018的值为_15在数轴上与表示的点距离最近的整数点所表示的数为_16有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的
6、概率为_17若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_三、解答题(共7小题,满分69分)18(10分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种
7、产品的车辆数及总利润最大值19(5分)有四张正面分别标有数字1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀随机抽取一张卡片,求抽到数字“1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率20(8分)如图,O中,AB是O的直径,G为弦AE的中点,连接OG并延长交O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC(1)求证:BC是O的切线;(2)O的半径为5,tanA=,求FD的长21(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,
8、点A、B、C、D均在小正方形的顶点上(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长22(10分)如图,ABC中,AB=AC,以AB为直径的O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F(1)求证:EF是O的切线;(2)若F=30,BF=3,求弧AD的长23(12分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了
9、下面两幅尚不完整的统计图请根据有关信息解答: (1)接受测评的学生共有_人,扇形统计图中“优”部分所对应扇形的圆心角为_,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率24(14分)如图,在四边形中,为一条对角线,.为的中点,连结.(1)求证:四边形为菱形;(2)连结,若平分,求的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三
10、角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.2、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2第三条边12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.3、C【解析】解:OM=60海里,ON=80海里,MN=100海里,OM2+ON2=MN2,MON=90,EOM=20,NOF=1802090=7
11、0故选C【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键4、D【解析】根据抛物线的图象与系数的关系即可求出答案【详解】解:由抛物线的开口可知:a0,由抛物线与y轴的交点可知:c0,由抛物线的对称轴可知:0,b0,abc0,故正确;令x=3,y0,9a+3b+c0,故正确;OA=OC1,c1,故正确;对称轴为直线x=1,=1,b=4aOA=OC=c,当x=c时,y=0,ac1bc+c=0,acb+1=0,ac+4a+1=0,c=,设关于x的方程ax1+bx+c=0(a0)有一个根为x,xc=4,x=c+4=,故正确;x11x1,P、Q两点分布在对称轴的两侧,1x
12、1(x11)=1x1x1+1=4(x1+x1)0,即x1到对称轴的距离小于x1到对称轴的距离,y1y1,故正确故选D【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定本题属于中等题型5、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.6、D【解析】根据两直线平行,内错角相等计算即可.【详解】因为mn,所以2=1+30,所以2=30+20=50,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的
13、关键.7、B【解析】分析:先根据平行线的性质得出2+BAD=180,再根据垂直的定义求出2的度数详解:直线ab,2+BAD=180 ACAB于点A,1=34,2=1809034=56 故选B点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大8、D【解析】可以用排除法求解.【详解】第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.【点睛】牢记科学记数法的规则是解决这一类题的关键.9、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、四象限,即不经过第一象限故选A考点:一次函数图象与系数
14、的关系10、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解:334亿=3.341010“点睛”此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(共7小题,每小题3分,满分21分)11、6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得CAE=E,易得CE=CA,由FAAE,可得FAC=F,易得CF=
15、AC,可得EF的长【详解】解:四边形ABCD为正方形,且边长为3, AC=3, AE平分CAD, CAE=DAE,ADCE, DAE=E, CAE=E, CE=CA=3, FAAE,FAC+CAE=90,F+E=90, FAC=F, CF=AC=3,EF=CF+CE=3+3=612、或10 【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在RtEQF中,(4-x)2+22=x2,所以x=(2)如图,当,所以FQ=点E在
16、DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在RtEQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.13、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1,AD=AD=1,AB=2,cosDAB=cosDAB=,DAB=DAB=60,CAB=30,CAD=30,CAD=1CAD的度数为:30或1故答案为30或1【点睛】本题考查圆周角定理;含30度角的直角三角形14、
17、【解析】仿照已知方法求出所求即可【详解】令S=1+3+32+33+32018,则3S=3+32+33+32019,因此3SS=320191,即S=故答案为:【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键15、3【解析】3.317,且在3和4之间,3.317-3=0.317,4-3.317=0.683,且0.6830.317,距离整数点3最近16、【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,
18、抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:故答案为【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等17、ACBD【解析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到FEH=90,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到EMO=90,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到AOD=90,根据垂直定义得到AC与BD垂直【详解】四边形EFGH是矩形,FEH=90,又点E、F、分别是AD、AB、各边的中点,EF是三角形ABD的中位线,
19、EFBD,FEH=OMH=90,又点E、H分别是AD、CD各边的中点,EH是三角形ACD的中位线,EHAC,OMH=COB=90,即ACBD故答案为:ACBD【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.三、解答题(共7小题,满分69分)18、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,从而可以得到
20、y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,根据题意得:y=100.7x+40.5(1x+1)+60.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,当x=7时,y取最大值,最大值=3.47+141.1=117.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花
21、椒的汽车为1辆时,总利润最大,最大利润为117.4万元【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.19、(1);(2)【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解解:(1)随机抽取一张卡片有4种等可能结果,其中抽到数字“1”的只有1种,抽到数字“1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,第一次抽到数字“2”且第二次抽到数字“0”的概率为20、(1)证明见解析(2) 【解析】(1)由点G是AE的中点
22、,根据垂径定理可知ODAE,由等腰三角形的性质可得CBF=DFG,D=OBD,从而OBD+CBF=90,从而可证结论;(2)连接AD,解RtOAG可求出OG=3,AG=4,进而可求出DG的长,再证明DAGFDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)点G是AE的中点,ODAE,FC=BC,CBF=CFB,CFB=DFG,CBF=DFGOB=OD,D=OBD,D+DFG=90,OBD+CBF=90即ABC=90OB是O的半径,BC是O的切线;(2)连接AD,OA=5,tanA=,OG=3,AG=4,DG=ODOG=2,AB是O的直径,ADF=90,DAG+A
23、DG=90,ADG+FDG=90DAG=FDG,DAGFDG,DG2=AGFG,4=4FG,FG=1由勾股定理可知:FD=.【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出CBF=DFG,D=OBD是解(1)的关键,证明证明DAGFDG是解(2)的关键.21、(1)画图见解析;(2)画图见解析;(3)【解析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得
24、EM=.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.22、(1)见解析;(2)2.【解析】证明:(1)连接OD,AB是直径,ADB=90,即ADBC,AB=AC,AD平分BAC,OAD=CAD,OA=OD,OAD=ODA,ODA=CAD,ODAC,DEAC,ODEF,OD过O,EF是O的切线(2)ODDF,ODF=90,F=30,OF=2OD,即OB+3=2OD,而OB=OD,OD=3,AOD=90+F=90+30=120,的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切
25、点,利用垂直构造直角三角形解决有关问题也考查了弧长公式23、 (1)80,135,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女) 【解析】试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试题解析:(1)80,135; 条形统计图如图所示(2)该校对安全知识达到“良”程度的人数:(人)(3)解法一:列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所
26、以(抽到1男1女) 女1女2女3男1男2女1-女2女1女3女1男1女1男2女1女2女1女2-女3女2男1女2男2女2女3女1女3女2女3-男1女3男2女3男1女1男1女2男1女3男1-男2男1男2女1男2女2男2女3男2男1男2-解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 24、(1)证明见解析;(2)AC=;【解析】(1)由DE=BC,DEBC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明ACD是直角三角形,ADC=60,AD=2即可解决问题;【详解】(1)证明:AD=2BC,E为AD的中点,DE=BC, ADBC,四边形BCDE是平行四边形,ABD=90,AE=DE,BE=DE,四边形BCDE是菱形(2)连接AC,如图所示:ADB=30,ABD=90,AD=2AB, AD=2BC,AB=BC,BAC=BCA,ADBC,DAC=BCA,CAB=CAD=30 AB=BC=DC=1,AD=2BC=2,DAC=30,ADC=60,在RtACD中,AC=【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.