1、山东省东营市河口区义和镇中学心校2024年中考数学最后一模试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD2如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )A点MB点NC点PD点Q3若与 互为相反数,则x的值是()A1B2C3D44在刚刚结束的中考英语听力、口语测试中,某班
2、口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为25已知反比例函数y=的图象在一、三象限,那么直线y=kxk不经过第()象限A一B二C三D四6如图,点C是直线AB,DE之间的一点,ACD=90,下列条件能使得ABDE的是()A+=180B=90C=3D+=907从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()ABCD8某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )A94分,96分B96分,96分
3、C94分,96.4分D96分,96.4分9如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是ABCD10若关于的方程的两根互为倒数,则的值为()AB1C1D0二、填空题(本大题共6个小题,每小题3分,共18分)11如图,从甲楼底部A处测得乙楼顶部C处的仰角是30,从甲楼顶部B处测得乙楼底部D处的俯角是45,已知甲楼的高AB是120m,则乙楼的高CD是_m(结果保留根号)12如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_13的算术平方根为_14小青在八年级上学期的数学成
4、绩如下表所示平时测验期中考试期末考试成绩869081如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_分15如图,在33的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是_16如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是_三、解答题(共8题,共72分)17(8分)已知关于 x 的一元二次方程 x22(k1)x+k(k+2)0 有两个不相等的实数根求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根18(8分)在中,BD为AC边上的中线,过点C作于点E
5、,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF求证:;求证:四边形BDFG为菱形;若,求四边形BDFG的周长19(8分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点点D是直线AC上方抛物线上任意一点(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且SPCD=2SPAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AMOD,CNOD,垂足分别为M、N当AM+CN的值最大时,求点D的坐标20(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”
6、四类校本课程的人数(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”请指出哪位同学的调查方式最合理 类别频数(人数)频率武术类 0.25书画类200.20棋牌类15b器乐类 合计a1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图请你根据以上图表提供的信息解答下列问题:a=_,b=_;在扇形统计图中,器乐类所对应扇形的圆心角的度数是_;若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程21(8分)在大城市,很多上班族选择
7、“低碳出行”,电动车和共享单车成为他们的代步工具某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间22(10分)如图,在梯形中,,点为边上一动点,作,垂足在边上,以点为圆心,为半径画圆,交射线于点.(1)当圆过点时,求圆的半径;(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.23(12分)如图,两座建筑物的水平距离为.从点测得点的仰角为53 ,从点测得点的俯角为37 ,求两
8、座建筑物的高度(参考数据:24如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.2、C【解析】根据旋转的性质:对应点到旋转中心的
9、距离相等,逐一判断即可.【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5OA=OM=ON=OQOP则点A不经过点P故选C.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.3、D【解析】由题意得+=0,去分母3x+4(1-x)=0,解得x=4.故选D.4、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故
10、选A【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型5、B【解析】根据反比例函数的性质得k0,然后根据一次函数的进行判断直线y=kx-k不经过的象限【详解】反比例函数y=的图象在一、三象限,k0,直线y=kxk经过第一、三、四象限,即不经过第二象限故选:B【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数与一次函数的性质6、B【解析】延长AC交DE于点F,根据所给条件如果能推出=
11、1,则能使得ABDE,否则不能使得ABDE;【详解】延长AC交DE于点F.A. +=180,=1+90,=90-1,即1,不能使得ABDE;B. =90,=1+90,=1,能使得ABDE;C.=3,=1+90,3=90+1,即1,不能使得ABDE;D.+=90,=1+90,=-1,即1,不能使得ABDE;故选B.【点睛】本题考查了平行线的判定方法:两同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.7、C【解析】左视图就是从物体的左边往右边看小正方形应该在右上角,故B错误,看不到的线要用虚线
12、,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确故此题选C8、D【解析】解:总人数为610%=60(人),则91分的有6020%=12(人), 98分的有60-6-12-15-9=18(人), 第30与31个数据都是96分,这些职工成绩的中位数是(96+96)2=96; 这些职工成绩的平均数是(926+9112+9615+9818+1009)60 =(552+1128+1110+1761+900)60 =578160 =96.1 故选D【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计
13、算是关键9、B【解析】根据常见几何体的展开图即可得【详解】由展开图可知第一个图形是正方体的展开图,第2个图形是圆柱体的展开图,第3个图形是三棱柱的展开图,第4个图形是四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.10、C【解析】根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值【详解】解:设、是的两根,由题意得:,由根与系数的关系得:,k2=1,解得k=1或1,方程有两个实数根,则,当k=1时,k=1不合题意,故舍去,当k=1时,符合题意,k=1, 故答案为:1【点睛】本题考查的是一元二次方程根与系数的关
14、系及相反数的定义,熟知根与系数的关系是解答此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、40【解析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案【详解】解:由题意可得:BDA=45,则AB=AD=120m,又CAD=30,在RtADC中,tanCDA=tan30=,解得:CD=40(m),故答案为40【点睛】此题主要考查了解直角三角形的应用,正确得出tanCDA=tan30=是解题关键12、或10 【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直
15、平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在RtEQF中,(4-x)2+22=x2,所以x=(2)如图,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在RtEQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.13、【解析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可【详解】=2,的算术平方根为【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.14、84.2【解析】小青该学期的总评成绩为:86
16、10%+9030%+8160%=84.2(分),故答案为: 84.2.15、【解析】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为【点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键16、同位角相等,两直线平行【解析】试题解析:利用三角板中两个60相等,可判定平行考点:平行线的判定三、解答题(共8题,共72分)17、方程的根【解析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再
17、利用分解因式法解一元二次方程,即可求出方程的根【详解】(1)关于x的一元二次方程x11(ka)x+k(k+1)=0有两个不相等的实数根,=1(k1)14k(k1)=16k+40,解得:k (1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=1当k=0时,方程的根为0和1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程18、(1)证明见解析(2)证明见解析(3)1【解析】利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,利用平行四边形的判
18、定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可【详解】证明:,又为AC的中点,又,证明:,四边形BDFG为平行四边形,又,四边形BDFG为菱形,解:设,则,在中,解得:,舍去,菱形BDFG的周长为1【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键19、(1)y=x2x+3;(2)点P的坐标为(,1);(3)当AM+CN的值最大时,点D的坐标为(,)【解析】(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位
19、置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PEx轴,垂足为点E,则APEACO,由PCD、PAD有相同的高且SPCD=2SPAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当ACOD时AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,根据相似三角形的性质可设点D的坐标为(3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论【详解】
20、(1)直线y=x+3与x轴、y轴分别交于A、C两点,点A的坐标为(4,0),点C的坐标为(0,3)点B在x轴上,点B的横坐标为,点B的坐标为(,0),设抛物线的函数关系式为y=ax2+bx+c(a0),将A(4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得: ,抛物线的函数关系式为y=x2x+3;(2)如图1,过点P作PEx轴,垂足为点E,PCD、PAD有相同的高,且SPCD=2SPAD,CP=2AP,PEx轴,COx轴,APEACO,AE=AO=,PE=CO=1,OE=OAAE=,点P的坐标为(,1);(3)如图2,连接AC交OD于点F,AMOD,CNOD,AFAM,C
21、FCN,当点M、N、F重合时,AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,设点D的坐标为(3t,4t)点D在抛物线y=x2x+3上,4t=3t2+t+3,解得:t1=(不合题意,舍去),t2=,点D的坐标为(,),故当AM+CN的值最大时,点D的坐标为(,)【点睛】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(3t,4t)20、(1)见解析;
22、(2) a=100,b=0.15; 144;140人【解析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值求得器乐类的频率乘以360即可用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数【详解】(1)调查的人数较多,范围较大,应当采用随机抽样调查,到六年级每个班随机调查一定数量的同学相对比较全面,丙同学的说法最合理(2)喜欢书画类的有20人,频率为0.20,a=200.20=100,b=15100=0.15;喜欢器乐类的频率为:10.250.200.15=0.4,喜欢
23、器乐类所对应的扇形的圆心角的度数为:3600.4=144;喜欢武术类的人数为:5600.25=140人【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键21、骑共享单车从家到单位上班花费的时间是1分钟【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得: 解得x=1经检验,x=1是原方程的解,且符合题意答:骑共享单车从家到单位上班花费的时间是1分钟22、(1)x=1 (2) (1)【解析】(1)作AMBC、连接AP,由等腰梯形性质
24、知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=98k,由ABECEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQEG、HNBC,先证EPQPHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PCNC=k,继而表示出EF、EH的长,从而出答案【详解】(1)作AMBC于
25、点M,连接AP,如图1,梯形ABCD中,AD/BC,且AB=DC=5、AD=1、BC=9,BM=4、AM=1,tanB=tanC=,PHDC,设PH=1k,则CH=4k、PC=5k,BC=9,PM=BCBMPC=55k,AP=AM+PM=9+(55k) ,PA=PH,9+(55k) =9k,解得:k=1或k=,当k= 时,CP=5k= 9,舍去;k=1,则圆P的半径为1(2)如图2,由(1)知,PH=PE=1k、CH=4k、PC=5k,BC=9,BE=BCPEPC=98k,ABECEH, ,即 ,解得:k= ,则PH= ,即圆P的半径为,圆B与圆P相交,且BE=98k= ,r;(1)在圆P上取
26、点F关于EH的对称点G,连接EG,作PQEG于G,HNBC于N,则EG=EF、1=1、EQ=QG、EF=EG=2EQ,GEP=21,PE=PH,1=2,4=1+2=21,GEP=4,EPQPHN,EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,sinC= 、cosC= ,NC= k、HN= k,PN=PCNC= k,EF=EG=2EQ=2PN= k,EH= ,故线段EH和EF的比值为定值【点睛】此题考查全等三角形的性质,相似三角形的性质,解直角三角形,勾股定理,解题关键在于作辅助线.23、建筑物的高度为.建筑物的高度为.【解析】分析:过点D作DEAB于于E,则DE=BC=60m在Rt
27、ABC中,求出AB在RtADE中求出AE即可解决问题详解:过点D作DEAB于于E,则DE=BC=60m, 在RtABC中,tan53=,AB=80(m)在RtADE中,tan37=,AE=45(m),BE=CD=ABAE=35(m)答:两座建筑物的高度分别为80m和35m点睛:本题考查的是解直角三角形的应用仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键24、(1)详见解析;(2)CEF=45【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:如图1中,连接OCOAOC,12,CD是O切线,OCCD,DCO90,3290,AB是直径,1B90,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,ECDB,CEFCFE,ECF90,CEFCFE45