1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则函数的图象大致为( )ABCD2已知集合,则=( )ABCD3天干地支,简称为干支,源自中国远古时代对天象的观
2、测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )ABCD4记递增数列的前项和为.若,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD5为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确
3、的是( )A甲的数据分析素养优于乙B乙的数据分析素养优于数学建模素养C甲的六大素养整体水平优于乙D甲的六大素养中数学运算最强6聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1207已知向量,若,则( )ABC-8D88设,是非零向量,若对于任意的,都有成立,则ABCD9已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )ABCD10为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向
4、左平移个单位长度D向右平移个单位长度11若单位向量,夹角为,且,则实数( )A1B2C0或1D2或112陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数恰好有3个不同的零点,则实数的取值范围为_14已知数列满足对任意,则数列的通项公式_.15已知数列的前项和为且满足,则数列的通项_16如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为_
5、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.18(12分)如图,D是在ABC边AC上的一点,BCD面积是ABD面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长19(12分) 已知函数,()当时,求曲线在处的切线方程; ()求函数在上的最小值;()若函数,当时,的最大值为,求证:.20(12分)如图,为等腰直角三角形,D为AC上一点,将沿BD
6、折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE. (1)证明:;(2)若,求二面角的余弦值.21(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.22(10分)如图,在三棱柱ABCA1B1C1中,A1A平面ABC,ACB90,ACCBC1C1,M,N分别是AB,A1C的中点.(1)求证:直线MN平面ACB1;(2)求点C1到平面B1MC的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析
7、式的图像,最后剩下即为此函数的图像.【详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,排除D选项.故A选项正确.故选:A【点睛】本题考查了函数图像的性质,属于中档题.2、C【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.3、B【解析】利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【点睛】本小题主要考查古典概型的计算,考查组
8、合数的计算,考查学生分析问题的能力,难度较易.4、D【解析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项,且有,或(舍,根据,同理易得,故选:D【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题5、D【解析】根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据
9、分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.6、C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.7、B【解析】先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,则,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和
10、模长的运算,属于基础题.8、D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.9、C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率
11、的取值范围的求法,属于基础题.10、D【解析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.11、D【解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,即,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.12、C【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面
12、积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.14、【解析】利用累加法求得数列的通项公式,由此求得的通项公式.【详解】由题,所以故答案为:【点睛】本小题
13、主要考查累加法求数列的通项公式,属于基础题.15、【解析】先求得时;再由可得时,两式作差可得,进而求解.【详解】当时,解得;由,可知当时,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.16、【解析】设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是定值,详见解析【解析】(1)根据长轴长为,离心率,则有求解.(
14、2)设,则,直线,令得,则,直线,令,得,则,再根据求解.【详解】(1)依题意得,解得,则椭圆的方程.(2)设,则,直线,令得,则,直线,令,得,则,.【点睛】本题主要考查椭圆的方程及直线与椭圆的位置关系,还考查了平面几何知识和运算求解的能力,属于中档题.18、();()【解析】()利用三角形面积公式以及并结合正弦定理,可得结果.()根据,可得,然后使用余弦定理,可得结果.【详解】(),所以所以;(),所以,所以,所以,所以边【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.19、()()见解析;()见解析.【解析】试题分析:()由题,所以故,代入点斜式可
15、得曲线在处的切线方程;()由题(1)当时,在上单调递增. 则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是()当时,令,则是单调递减函数. 因为,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减. 所以当时,取得最大值是因为,所以由此可证试题解析:()因为函数,且, 所以,所以所以,所以曲线在处的切线方程是,即()因为函数,所以(1)当时,所以在上单调递增. 所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所
16、以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最小值是 ()因为函数,所以所以当时,令,所以是单调递减函数. 因为,所以在上存在,使得,即所以当时,;当时,即当时,;当时,所以在上单调递增,在上单调递减. 所以当时,取得最大值是因为,所以因为,所以所以20、(1)见解析;(2)【解析】(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建
17、立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦【详解】(1)易知与平面垂直,连接,取中点,连接,由得,平面,平面,又,平面,;(2)由,知是中点,令,则,由,解得,故以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,则,设平面的法向量为,则,取,则又易知平面的一个法向量为,二面角的余弦值为【点睛】本题考查证明线线垂直,考查用空间向量法求二面角证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角21、(1)(2)【解析】(1)因为,所以
18、,由余弦定理得,化简得, 可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号). 由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.22、(1)证明见解析.(2)【解析】(1)连接AC1,BC1,结合中位线定理可证MNBC1,再结合线面垂直的判定定理和线面垂直的性质分别求证ACBC1,BC1B1C,即可求证直线MN平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则NAC1且N为AC1的中点;M是AB的中点.所以:MNBC1;A1A平面AB
19、C,AC平面ABC,A1AAC,在三棱柱ABCA1B1C1中,AA1CC,ACCC1,ACB90,BCCC1C,BC平面BB1C1C,CC1平面BB1C1C,AC平面BB1C1C,BC平面BB1C1C,ACBC1;又MNBC1ACMN,CBC1C1,四边形BB1C1C正方形,BC1B1C,MNB1C,而ACB1CC,且AC平面ACB1,CB1平面ACB1,MN平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以MP,因为CM,B1C;B1M,所以所以:CMB1M.因为,所以,解得所以点,到平面的距离为 【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题