1、2023-2024学年广东省茂名市名校中考数学猜题卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:;GDE=45;DG=DE在以上4个结论中,正确的共有( )个A1个B2 个C
2、3 个D4个2如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D63如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A9B10C11D124二次函数的对称轴是 A直线B直线Cy轴Dx轴5如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD6的倒数的绝对值是()ABCD7方程的解为()Ax=1Bx=1Cx=2Dx=38已知下列命题:对顶角相等;若ab0,则;对角线相等且互相垂直的四边形是正方形;抛物线y=x22x与坐标轴有3个不同交点;
3、边长相等的多边形内角都相等从中任选一个命题是真命题的概率为()ABCD9如图是某零件的示意图,它的俯视图是()ABCD10近似数精确到( )A十分位B个位C十位D百位二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_12已知扇形的弧长为,圆心角为45,则扇形半径为_13在ABC中,点D在边BC上,BD=2CD,那么= 14如图,垂直于x轴的直线AB分别与抛物线C1:yx2(x0)和抛物线C2:y(x0)交于A,B两点,过点A作CDx轴分别与y轴和抛物线C2交于点C、D,过
4、点B作EFx轴分别与y轴和抛物线C1交于点E、F,则 的值为_15若正六边形的边长为2,则此正六边形的边心距为_16如图,已知O为ABC内一点,点D、E分别在边AB和AC上,且,DEBC,设、,那么_(用、表示)三、解答题(共8题,共72分)17(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完
5、整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率18(8分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设A
6、PQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值19(8分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?20(8分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正
7、方形NPAB,射线MA交直线l于点C,连接BC(1)设ONP,求AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明21(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数 105 (1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计
8、这3000人中大约有多少人是A型血?22(10分)在O中,弦AB与弦CD相交于点G,OACD于点E,过点B作O的切线BF交CD的延长线于点F(I)如图,若F=50,求BGF的大小;(II)如图,连接BD,AC,若F=36,ACBF,求BDG的大小23(12分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较
9、好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定24楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45,求楼房AB的高(注:坡度i是指坡面的铅直高度与水平宽度的比)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,A=GFD=90,于是根据“HL”判定ADGFDG,再由GF+GB=GA+GB=12,EB=EF,BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角
10、形性质可求得GDE=45,再抓住BEF是等腰三角形,而GED显然不是等腰三角形,判断是错误的【详解】由折叠可知,DF=DC=DA,DFE=C=90,DFG=A=90,ADGFDG,正确;正方形边长是12,BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12x)2,解得:x=4AG=GF=4,BG=8,BG=2AG,正确;ADGFDG,DCEDFE,ADG=FDG,FDE=CDEGDE=45.正确; BE=EF=6,BEF是等腰三角形,易知GED不是等腰三角形,错误;正确说法是故选:C【点睛】本题综合性较强,考
11、查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度2、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数3、B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,
12、母线长为:5,故这个几何体的侧面积为:25=10,故选B【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键4、C【解析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案【详解】解:二次函数y=x2的对称轴为y轴故选:C 【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k)5、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有
13、n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6、D【解析】直接利用倒数的定义结合绝对值的性质分析得出答案【详解】解:的倒数为,则的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.7、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方
14、程,解题关键是注意解得的解要进行检验.8、B【解析】对顶角相等,故此选项正确;若ab0,则,故此选项正确;对角线相等且互相垂直平分的四边形是正方形,故此选项错误;抛物线y=x22x与坐标轴有2个不同交点,故此选项错误;边长相等的多边形内角不一定都相等,故此选项错误;从中任选一个命题是真命题的概率为:故选:B9、C【解析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定
15、义.10、C【解析】根据近似数的精确度:近似数5.0102精确到十位故选C考点:近似数和有效数字二、填空题(本大题共6个小题,每小题3分,共18分)11、5【解析】作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题【详解】解:作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q四边形ABCD是矩形,ADC=90,DQAE,DE=AD,QE=QA,QA+QP=QE+QP=EP,此时QA+QP最短(垂线段最短),CAB=30,DAC=60,在RtAPE中,APE=90,AE=2AD=10,EP=AEsin6
16、0=10=5故答案为5【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型12、1【解析】根据弧长公式l=代入求解即可【详解】解:,故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=13、【解析】首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值【详解】,=-=-,BD=2CD,=,=+=故答案为14、【解析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点横坐标为,则点纵坐标为,点B的纵坐标为 ,BEx轴,点F纵坐标为,点F是抛物线上的点,点F横坐标为,
17、轴,点D纵坐标为,点D是抛物线上的点,点D横坐标为,故答案为【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.15、.【解析】连接OA、OB,根据正六边形的性质求出AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可【详解】连接OA、OB、OC、OD、OE、OF,正六边形ABCDEF,AOB=BOC=COD=DOE=EOF=AOF,AOB=60,OA=OB,AOB是等边三角形,OA=OB=AB=2,ABOM,AM=BM=1,在OAM中,由勾股定理得:OM=16、【解析】根据,DEBC,结合平行线分线段成比例来求.【详解】,DE
18、BC, = =.,.故答案为:.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.三、解答题(共8题,共72分)17、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72;(4).【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论试题解析:(1)6010%=600(人)答:本次参加抽样调查的居民有600人(2)如图;(3),360(110%30%40%)=72(4)如图;(列
19、表方法略,参照给分)P(C粽)=答:他第二个吃到的恰好是C粽的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法18、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积
20、求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运动时,PQ与A
21、BC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30,AP=8t,AGP=90,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,
22、当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.19、 (1)y=2t+200(1t80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件【解析】(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w,根据“总利润=每千克利润销售量”
23、列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t的值,结合函数图象即可得出答案;【详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得: ,解得:,y=2t+200(1t80,t为整数); (2)设日销售利润为w,则w=(p6)y,当1t80时,w=(t+166)(2t+200)=(t30)2+2450, 当t=30时,w最大=2450;第30天的日销售利润最大,最大利润为2450元 (3)由(2)得:当1t80时,w=(t30)2+2450,令w=2400,即 (t30)2+2450=2400,解得:t1=20、t2=40,t的取值范围
24、是20t40,共有21天符合条件【点睛】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键20、(1)45(2),理由见解析【解析】(1)由线段的垂直平分线的性质可得PMPN,POMN,由等腰三角形的性质可得PMNPNM,由正方形的性质可得APPN,APN90,可得APO,由三角形内角和定理可求AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可得,MNCANB45,可证CBNMAN,可得【详解】解:(1)如图,连接MP,直线l是线段MN的垂直平分线,PMPN,POMNPMNPNMMPONPO9
25、0,四边形ABNP是正方形APPN,APN90APMP,APO90(90)APMMPOAPO(90)902,APPM,AMNAMPPMN4545(2)理由如下:如图,连接AN,CN,直线l是线段MN的垂直平分线,CMCN,CMNCNM45,MCN90,四边形APNB是正方形ANBBAN45,MNCANB45ANMBNC又CBNMAN【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键21、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血
26、者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数【详解】(1)这次随机抽取的献血者人数为510%=50(人),所以m=100=20,故答案为50,20;(2)O型献血的人数为46%50=23(人),A型献血的人数为5010523=12(人),补全表格中的数据如下:血型ABABO人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000=720,估计这3000人中大
27、约有720人是A型血【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数 22、(I)65;(II)72【解析】(I)如图,连接OB,先利用切线的性质得OBF=90,而OACD,所以OED=90,利用四边形内角和可计算出AOB=130,然后根据等腰三角形性质和三角形内角和计算出1=A=25,从而得到2=65,最后利用三角形内角和定理计算BGF的度数;(II)如图,连接OB,BO的延长线交AC于H,利用切线的性质得OBBF,再利用ACBF得到BHAC,与()方
28、法可得到AOB=144,从而得到OBA=OAB=18,接着计算出OAH=54,然后根据圆周角定理得到BDG的度数【详解】解:(I)如图,连接OB,BF为O的切线,OBBF,OBF=90,OACD,OED=90,AOB=180F=18050=130,OA=OB,1=A=(180130)=25,2=901=65,BGF=1802F=1806550=65;(II)如图,连接OB,BO的延长线交AC于H,BF为O的切线,OBBF,ACBF,BHAC,与()方法可得到AOB=180F=18036=144,OA=OB,OBA=OAB=(180144)=18,AOB=OHA+OAH,OAH=14490=54
29、,BAC=OAH+OAB=54+18=72,BDG=BAC=72【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理23、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:
30、70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.24、(39+9)米【解析】过点E作EFBC的延长线于F,EHAB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在RtAEH中求出AH,继而可得楼房AB的高【详解】解:过点E作EFBC的延长线于F,EHAB于点H,在RtCEF中,=tanECF, ECF=30,EF=CE=10米,CF=10米,BH=EF=10米, HE=BF=BC+CF=(25+10)米,在RtAHE中,HAE=45, AH=HE=(25+10)米,AB=AH+HB=(35+10)米答:楼房AB的高为(35+10)米【点睛】本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键