2019-2020学年湖北省部分重点中学高一下学期摸底考试数学试题(解析版).doc

上传人(卖家):四川三人行教育 文档编号:843906 上传时间:2020-11-08 格式:DOC 页数:19 大小:1.65MB
下载 相关 举报
2019-2020学年湖北省部分重点中学高一下学期摸底考试数学试题(解析版).doc_第1页
第1页 / 共19页
2019-2020学年湖北省部分重点中学高一下学期摸底考试数学试题(解析版).doc_第2页
第2页 / 共19页
2019-2020学年湖北省部分重点中学高一下学期摸底考试数学试题(解析版).doc_第3页
第3页 / 共19页
2019-2020学年湖北省部分重点中学高一下学期摸底考试数学试题(解析版).doc_第4页
第4页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第 1 页 共 19 页 2019-2020 学年湖北省部分重点中学高一下学期摸底考试数学年湖北省部分重点中学高一下学期摸底考试数 学试题学试题 一、单选题一、单选题 1已知集合已知集合0,1,2A, 2 |560Bx xx,则,则AB ( ) A1,2 B 0,1,2 C D 2 【答案】【答案】D 【解析】【解析】由集合 B的描述求集合,应用集合的交运算求AB. 【详解】 由已知,有 |6Bx x 或1x ,而0,1,2A, 2AB , 故选:D 【点睛】 本题考查了集合的基本运算,利用不等式求集合,应用集合的交运算求交集,属于简单 题. 2下列函数既是偶函数又在下列函数既是偶函数又在 ,

2、0上递增的是(上递增的是( ) A 1 3 x y B 2 3 logyx C2 x y D 2 yx= 【答案】【答案】C 【解析】【解析】根据指对幂函数的奇偶性和单调性,即可容易求得. 【详解】 对 1 3 x y ,其既不是奇函数又不是偶函数,故A错误; 对 2 3 logyx,其是偶函数,且在区间,0上单调递减,故B错误; 对2 x y ,其是偶函数,且在区间,0单调递增,故C正确; 对 2 yx=,其是偶函数,且在区间,0是减函数,故D错误. 故选:C. 【点睛】 本题考查指对幂函数的单调性和奇偶性,属综合基础题. 第 2 页 共 19 页 3已知角已知角的终边经过点的终边经过点 P

3、(4, ,3),则,则2sincos的值等于的值等于( ) A 2 5 B 4 5 C 3 5 - D 2 5 【答案】【答案】A 【解析】【解析】根据角的终边过点4 3P,,利用任意角三角函数的定义,求出sin和 cos的值,然后求出2 cossin的值. 【详解】 因为角的终边过点4, 3 ,5PrOP, 所以利用三角函数的定义, 求得 34 ,cos 55 sin , 342 2cos2 555 sin ,故选 A. 【点睛】 本题主要考查三角函数的定义,意在考查对基础知识掌握的熟练程度,属于简单题. 4已知实数已知实数 a b均不为零,且均不为零,且a b.若若Rc,则下列不等式中一定

4、成立的是(,则下列不等式中一定成立的是( ) A 11 ab Bacb c C|ab D 22 acbc 【答案】【答案】C 【解析】【解析】根据条件取1a ,1b,0c =可排除ABD,由不等式的基本性质可知C正 确 【详解】 解:由a,b为非零实数,Rc且ab,取1a ,1b,0c =,可排除ABD; ab,aa,所以ab,故C正确 故选:C 【点睛】 本题考查了不等式的基本性质,属于基础题 5已知平面已知平面/平面平面,直线,直线m,直线 ,直线n,下列结论中不正确的是(,下列结论中不正确的是( ) A / /m B /n C/mn Dm与与n不相交不相交 【答案】【答案】C 【解析】【

5、解析】根据面面平行的定义和性质可得选项. 【详解】 根据面面平行的的定义和性质知: 平面/平面,直线m,直线n,则 第 3 页 共 19 页 / /m, / n, m与n不相交, 故选:C. 【点睛】 本题考查面面平行的定义和性质,属于基础题. 6下列说法中正确的是(下列说法中正确的是( ) A以直角梯形的一腰所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆以直角梯形的一腰所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆 台台 B若正方体的棱长扩大到原来的若正方体的棱长扩大到原来的2倍,则其体积扩大到原来的倍,则其体积扩大到原来的6倍 倍 C有两个面互相平行,其余各面都是梯形的

6、几何体是棱台有两个面互相平行,其余各面都是梯形的几何体是棱台 D用一个平面去截圆锥,若该平面过圆锥的轴,则所得的截面是一个等腰三角形用一个平面去截圆锥,若该平面过圆锥的轴,则所得的截面是一个等腰三角形 【答案】【答案】D 【解析】【解析】利用圆台的形成可判断 A 选项的正误;利用正方体的体积公式可判断 B 选项 的正误;利用棱台的定义可判断 C 选项的正误;利用圆锥的轴截面可判断 D 选项的正 误. 【详解】 对于 A选项,将直角梯形垂直于底边的腰为旋转轴, 其余三边旋转形成的面所围成的旋转体是圆台, 若将直角梯形不垂直于底边的腰为旋转轴, 其余三边旋转形成的面所围成的旋转体不是圆台,A选项错

7、误; 对于 B选项,设正方体的棱长为a,则正方体的体积为 3 a, 将正方体的棱长扩大到原来的2倍,则棱长变为2a, 正方体的体积为 3 8a,B选项错误; 对于 C选项,有两个面互相平行,其余各面都是梯形, 且侧棱延长后会交于一点,这样的几何体叫棱台, 若两个面互相平行,其余各面都是梯形, 且侧棱延长后不交于一点,这样的几何体不是棱台,C 选项错误; 对于 D选项,圆锥的轴截面为等腰三角形,D选项正确. 故选:D. 【点睛】 本题考查圆台、棱台、圆锥轴截面的理解,同时也考查了正方体体积公式的应用,考查 计算能力与推理能力,属于基础题. 第 4 页 共 19 页 7 函数 函数( )sin()

8、(0,) 2 f xx 的最小正周期为的最小正周期为, 若其图象向右平移, 若其图象向右平移 3 个个 单位后关于单位后关于 y 轴对称,则(轴对称,则( ) A2, 3 B2, 6 C4, 6 D2, 6 【答案】【答案】B 【解析】【解析】试题分析:由题意可知:,得,函数关于对称,所以, ,又因为,解得,故选 B. 【考点】的图像和性质 8在平行四边形在平行四边形 ABCD 中,中,M是对角线是对角线 AC上一点,且 上一点,且3AMMC=,则,则DM ( ) A 21 33 CBCD B 21 33 CBCD C 13 44 CBCD D 13 44 CBCD 【答案】【答案】D 【解析

9、】【解析】根据平面向量线性运算法则计算可得; 【详解】 解:因为3AMMC=,所以 1 4 CMCA,所以 111 444 DMDCCMDCCADCCDCBCDCDCB 13 44 CBCD 故选:D 【点睛】 本题考查平面向量线性运算,属于基础题. 9如图,在直三棱柱如图,在直三棱柱 111 ABCABC中,中,4ACBC,ACBC, 1 5CC ,D、 E分别是分别是AB、 11 BC的中点,则异面直线的中点,则异面直线BE与与CD所成的角的余弦值为(所成的角的余弦值为( ) 第 5 页 共 19 页 A 3 3 B 1 3 C 58 29 D 3 87 29 【答案】【答案】C 【解析】

10、【解析】取 11 AC的中点F,连接DF、EF、CF,推导出四边形BDFE为平行四边 形, 可得出/BE DF, 可得出异面直线BE与CD所成的角为CDF, 通过解CDF, 利用余弦定理可求得异面直线BE与CD所成的角的余弦值. 【详解】 取 11 AC的中点F,连接DF、EF、CF. 易知EF是 111 A B C 的中位线,所以 11 /EF AB且 11 1 2 EFAB. 又 11 /AB AB且 11 ABAB,D为AB的中点,所以 11 /BD AB且 11 1 2 BDAB,所以 /EF BD且EFBD. 所以四边形BDFE是平行四边形, 所以/DF BE, 所以CDF就是异面直

11、线BE与CD 所成的角. 第 6 页 共 19 页 因为4ACBC,ACBC, 1 5CC ,D、E、F分别是AB、 11 BC、 11 AC的 中点, 所以 111 1 2 2 C FAC, 111 1 2 2 B EBC且CDAB. 由勾股定理得 22 444 2AB ,所以 44 2 2 4 2 AC BC CD AB . 由勾股定理得 2222 11 5229CFCCC F, 2222 11 5229DFBEBBBE . 在CDF中,由余弦定理得 222 292 229 58 cos 292292 2 CDF . 故选:C. 【点睛】 本题考查异面直线所成角的余弦值的计算,一般利用平移

12、直线法找出异面直线所成的 角,考查计算能力,属于中等题. 10已知三棱锥已知三棱锥SABC的四个顶点都在球的四个顶点都在球 O 的表面上,且 的表面上,且SAAC,SAAB, 若已知若已知2AB ,4BC ,60ABC,6SA,则球,则球 O的体积是(的体积是( ) A 100 3 B 200 3 C 52 13 3 D 52 3 【答案】【答案】C 【解析】【解析】由余弦定理求|AC,再由正弦定理求ABC的外接圆半径r,又SA面 ABC知ABC的外接圆的圆心与SA所构成的截面必过三棱锥SABC外接球的球 心,即可求出球的半径,根据球的体积公式求体积即可. 【详解】 由2AB ,4BC ,60

13、ABC, 则由余弦定理有: 222 |2|cos12ACABBCAB BCABC,即| 2 3AC , 由正弦定理知ABC的外接圆半径: 3 2 sin60 r , 第 7 页 共 19 页 由题意知:SA面ABC,又6SA,三棱锥SABC的外接球半径: 22 | ()13 2 SA Rr, 由球的体积公式,有: 3 452 13 33 VR, 故选:C 【点睛】 本题考查了求三棱锥外接球的体积,根据三棱锥一条棱与底面垂直,该底面的外接圆的 圆心与棱所成截面过球心即可求球体的半径,进而求体积. 11形如形如 2 21 n (n是非负整数是非负整数)的数称为费马数,记的数称为费马数,记为为 n

14、F数学家费马根据数学家费马根据 0 F, 1 F, 2 F, 3 F, 4 F都是质数提出了猜想: 费马数都是质数都是质数提出了猜想: 费马数都是质数.1732 年, 欧拉算出年, 欧拉算出 5 641 6700417F , 也就是说也就是说 5 F不是质不是质数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式. 后来,人们又陆续找到了不少反例后来,人们又陆续找到了不少反例.如如 6 274177 67280421310721F 不是质数那么不是质数那么 F6的位数为( 的位数为( ) (参考数据:参考数据:lg20.3010)

15、 A21 B20 C19 D18 【答案】【答案】B 【解析】【解析】由 6 2 21274177 67280421310721 ,结合换底公式有 lg(274177 67280421310721 1) 64 lg2 即可求出F6的位数. 【详解】 由题意知: 6 2 21274177 67280421310721 , 2 lg(274177 67280421310721 1) 64log (274177 67280421310721 1) lg2 , 故 64lg2 120.264 274177 672804213107211010 故选:B 【点睛】 本题考查了对数的运算,根据对数的换底公

16、式,结合指对数互化有 6 10nF 求位数; 第 8 页 共 19 页 12已知函数已知函数 2f xmxm, 2 211,0 ln ,0 xmxm x g x x x ,若这两个函,若这两个函 数图象有且数图象有且只有三个不同的交点,则实数只有三个不同的交点,则实数 m的取值范围是(的取值范围是( ) A2, 1 B 2, 1 C1,0 D1,0 【答案】【答案】C 【解析】【解析】分类讨论,将问题转化为二次方程根的分布问题,即可容易求得参数范围. 【详解】 因为 2f xm x,且当0 x时, g xlnx; (1)当0m,0 x时, f x与 g x只有一个交点, 要满足题意,只需当0

17、x时, f xg x有两个根, 等价于 2 21110 xmxmxxm 有两个非正根即可. 显然,该方程的两根为1和1 m , 要满足题意,只需10m 且11m 即可,即1m且0m, 又0m,故1,0m ; (2)当0m,0 x时, f x与 g x有 2个交点, 要满足题意,只需当0 x时, f xg x有一个根, 等价于 2 21110 xmxmxxm 有一个非正根即可. 显然,该方程的两根为1和1 m , 则只需11m 或10m 即可, 解得0m或1m,又0m, 故m; 综上所述:1,0m . 故选:C. 【点睛】 本题考查由函数零点的个数求参数的范围,属综合中档题. 二、填空题二、填空

18、题 13函数函数 2 20192020 ln1f xxxx 的零点个数为的零点个数为_. 第 9 页 共 19 页 【答案】【答案】2 【解析】【解析】求得函数 yf x的定义域为1,,然后解方程 0f x ,可得出结论. 【详解】 函数 2 20192020 ln1f xxxx的定义域为1,, 解方程 0f x ,可得 2 201920200 xx或 ln10 x, 1x Q,解得2020 x 或2x. 因此,函数 2 20192020 ln1f xxxx的零点个数为2. 故答案为:2. 【点睛】 本题考查函数零点个数的求解,在解方程时不要忽略了函数定义域的限制,考查计算能 力,属于基础题.

19、 14已知向量已知向量(2,1)a ,( ,1)bx y,且,且ab ,若,若x,y均为正数,则均为正数,则 21 xy 的最的最 小值是小值是_. 【答案】【答案】9 【解析】【解析】根据a b ,可得21xy,然后根据 21 2 12 xy xyxy 利用基本不等 式可求出最小值 【详解】 解:向量(2,1)a ,( ,1)bx y,且ab 21(1)0a bxy , 21xy ,又x,y均为正数, 2222 25529 2121yxyx xy xyxyxyxy , 当且仅当 22yx xy ,即 1 3 xy时取等号, 21 xy 的最小值为9 故答案为:9 【点睛】 第 10 页 共

20、19 页 本题考查了向量垂直和利用基本不等式求最值,考查了方程思想和转化思想,属于中档 题 15在在ABC中,已知中,已知2AB ,| |CACBCACB , 2 cos22sin1 2 BC A , 则则BA在在BC方向上的投影为方向上的投影为_. 【答案】【答案】 3 【解析】【解析】首先可得 2 C ,再由二倍角公式可得 1 cos 2 A,从而求出A,B,即可求 出BA在BC方向上的投影; 【详解】 解:因为CACBCA CB,所以 22 CA CBCA CB 所以 0CA CB ,即 2 C 因为 2 cos22sin1 2 BC A ,所以 2 cos22sin1 2 A A 即

21、2 cos22sin1 2 A A,即cos2cos0AA,所以 2 2coscos10AA 解得 cos1A或 1 cos 2 A 因为0, 2 A ,所以 1 cos 2 A,即 3 A ,所以 6 B , 因为2AB ,所以2sin3BCA 所以BA在BC方向上的投影为3BC 故答案为:3 【点睛】 本题考查平面向量的几何意义,属于中档题. 16已知正方体已知正方体 1111 ABCDABC D的棱长为的棱长为 1,点,点 P在线段在线段 1 CB上,若平面 上,若平面经过点经过点 1 ACP、 、,则它截正方体,则它截正方体 1111 ABCDABC D所得的截面的周长最小值为所得的截

22、面的周长最小值为_. 第 11 页 共 19 页 【答案】【答案】2 5 【解析】【解析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的 形状,再求周长的最小值即可. 【详解】 当 P 点靠近 C或与 C重合时, 1 ACP、 、确定的平面,因为平面 1111 /ADD A BCC B,所以 1 /AE QC,同理 1 /AQ EC, 所以四边形 1 AECQ是平行四边形,平面 1 AECQ就是截面, 设 1 =D E x(01)x,则 1 =1AEx, 所以 2 1 =1ECAQx, 2 1 =(1)1AE QCx, 222222 1(1)1(00 1)(1)(0 1)

23、AQAExxxx ) (, 可以看作( ,0)P x到(0,1)A和 (1,1)B 距离的最小值, (0,1)A关于 x 轴的对称点 (0, 1) A ,连接A B,其长度即为AQAE的最小值,由勾股定理的| |5A B,所 以周长的最小值为2 5, 当 P 点靠近 1 B或与 1 B重合时, 第 12 页 共 19 页 1 ACP、 、确定的平面,因为平面 1111 /ADD A BCC B,所以 1 /AE QC,同理 1 /AQ EC, 所以四边形 1 AECQ是平行四边形,平面 1 AECQ就是截面, 设 1 =D E x(01)x,则 1 =1AEx, 所以 2 1 =1ECAQx,

24、 2 1 =(1)1AE QCx, 222222 1(1)1(00 1)(1)(0 1)AQAExxxx ) ( 证法同上,所以周长的最小值为2 5, 综上所述,所以周长的最小值为2 5. 故答案为:2 5. 【点睛】 本题主要考查平面的基本性质,面面平行的性质及截面周长的求法,还考查了空间想象 力和运算求解的能力. 三、解答题三、解答题 17已知平面向已知平面向量量a、b满足满足 2a ,1b ,a与与b的夹角为的夹角为45. (1)求)求2ab的值;的值; (2)若向量)若向量2a b 与与 3ab 平行,求实数平行,求实数的值的值. 【答案】【答案】 (1)10; (2)6. 【解析】【

25、解析】 (1)利用平面向量数量积的运算性质可求得 2 22abab 的值; (2)设23abkab,根据平面向量的基本定理可得出关于、k的方程组, 由此可解得实数的值. 【详解】 (1) 222 22 22444cos454ababaa bbaa bb 24410 ; (2)向量2a b 与 3ab 平行,设233abkabk akb, 第 13 页 共 19 页 由题意可知,向量a与b不共线,可得 2 3 k k ,解得 6 . 【点睛】 本题考查利用平面向量的数量积求模,同时也考查了利用平面向量共线求参数,考查计 算能力,属于基础题. 18函数函数( ) sin()0,0,| 2 f xA

26、xA 部分图象如图所示部分图象如图所示. (1)求)求 f x的解析式;的解析式; (2)设)设( )( )cos2g xf xx,求函数,求函数 g x在区间在区间0, 2 上的最大值和最小值上的最大值和最小值. 【答案】【答案】 (1)( )sin 2 6 f xx ; (2)最大值为 1,最小值 1 2 . 【解析】【解析】 (1)由三角函数的图象,结合三角函数的性质即可求参数A、,进而 得到 f x的解析式; (2)利用正弦和差公式化简函数式,即可求区间内的最大、小值; 【详解】 (1)由图可得1A, 2 2362 T ,有T,2, 当 6 x 时, ( ) 1fx =,可得sin1

27、3 ,又| 2 , 6 ,即( )sin 2 6 f xx . (2) ( )( )cos2sin 2cos2 6 g xf xxxx sin2 coscos2 sincos2 66 xxx 31 sin2cos2sin 2 226 xxx ,在0 2 x ,有 5 2 666 x , 当 3 x 时, g x有最大值为 1;当0 x时, g x有最小值 1 2 . 第 14 页 共 19 页 【点睛】 本题考查了三角函数的图象与性质,利用函数图象判断最值、周期求解析式,结合两角 和差正弦公式化简函数式,求区间最值 19在在ABC中,角中,角 A,B,C的对边分别为的对边分别为 a, ,b,c

28、,若,若 3 cos 4 A ,2BA,3b. (1)求)求sinB和和a的值;的值; (2)已知点)已知点 M为为 BC的中点,求的中点,求 AM的长度的长度. 【答案】【答案】 (1) 3 7 sin 8 B ,2a; (2) 106 4 AM . 【解析】【解析】 (1)由已知利用同角三角函数基本关系式可求sin A的值,进而利用二倍角的 正弦函数公式可求sinB的值,进而利用正弦定理可得a的值 (2)由余弦定理求出c,再利用余弦定理计算可得; 【详解】 解: (1)由0A, 3 cos 4 A ,得 7 sin 4 A , 7 33 7 sinsin22sincos2 448 BAAA

29、, 由正弦定理 sinsin ab AB ,可得 sin 2 sin bA a B . 3 7 sin 8 B ,2a . (2)在ABC中,由余弦定理 222 2cosabcbcA, 得 2 29100cc,解得 5 2 c 或2c , 当2c 时,由2ac得ABC为等腰三角形,又2BA, 得ABC为等腰直角三角形,矛盾. 5 2 c . 在ABM中,由余弦定理 222 53 2cos 8 AMABBMAB BMB, 106 4 AM . 【点睛】 本题主要考查了同角三角函数基本关系式,正弦定理、余弦定理的应用,考查了计算能 第 15 页 共 19 页 力和转化思想,属于基础题 20如图,四

30、棱锥如图,四棱锥PABCD的底面是边长为的底面是边长为 8 的正方形,四条侧棱长均为 的正方形,四条侧棱长均为2 17,点,点 G.E.F.H分别是棱分别是棱 PBABDCPC上共面的四点,上共面的四点,/ /BC平面平面 GEFH. (1)证明:)证明:/GHEF; (2)若)若2EB ,平面,平面/PDA平面平面 GEFH,求四边形,求四边形 GEFH的面积的面积. 【答案】【答案】 (1)证明见解析; (2) 7 13 2 . 【解析】【解析】 (1)由线面平行的性质可得/BC GH、/BC EF,即可得证; (2)由面面平行的性质可得/GE PA,即可求出 17 2 GE ,同理 17

31、 2 HF ,再求 出GH,EF,即可求出面积; 【详解】 (1)/BC平面 GEFH, 又BC 平面 PBC且平面PBC平面GEFHGH, /BC GH. 又/BC平面 GEFH, 又BC 平面 ABCD 且平面ABCD平面GEFHEF, /BC EF, /EF GH. (2)平面/PDA平面 GEFH, 又平面PAB平面PADPA,且平面PAB平面GEFHGE, /GE PA, 1 4 BEPA, 117 42 GEPA, 同理 117 42 HFPD, 又由(1)知,/BC GH, 3 6 4 GHBC, 第 16 页 共 19 页 在四边形 GEFH 中: 17 2 GEHF,6GH

32、,8EF 且 /EF GH, 四边形 GEFH 为等腰梯形, 如图所示:过 G作 GM垂直于 EF 于 M, 过 H 作 GN垂直于 EF于 N, 在直角GEM中, 22 13 2 GMGEEM, 17 13 22 EFGH SGHEFGM 梯形 . 【点睛】 本题考查线面平行的判定与性质,考查梯形面积的计算,正确运用线面平行的判定与性 质是关键,属于中档题 21 新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病.面对前所未知 面对前所未知 突突 如其来如其来 来势汹汹的疫情天灾, 习近平总书记亲自指挥来势汹汹的疫情天灾, 习近平

33、总书记亲自指挥 亲自部署, 强调把人民生命安全亲自部署, 强调把人民生命安全 和身和身体健康放在第一位,明确坚决打赢疫情防控的人民战争体健康放在第一位,明确坚决打赢疫情防控的人民战争 总体战总体战 阻击战阻击战.随着疫情随着疫情 防控形势好转,中央岀台了一系列助力复工复产好政策防控形势好转,中央岀台了一系列助力复工复产好政策.城市快递行业运输能力迅速得城市快递行业运输能力迅速得 到恢复,市民的网络购物也越来越便利到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车根据大数据统计,某条快递线路运行时,发车 时间间隔时间间隔t(单位: 分钟单位: 分钟)满足:满足:415t

34、 ,tN, 平均每趟快递车辆的载件个数, 平均每趟快递车辆的载件个数 p t(单单 位:个位:个)与发车时与发车时间间隔间间隔t近似地满足近似地满足 2 1800 15(9) ,49 ( ) 1800,915 tt p t t ,其中,其中tN. (1)若平均每趟快递车辆的载件个数不超过)若平均每趟快递车辆的载件个数不超过 1500 个,试求发车时间间隔个,试求发车时间间隔t的值;的值; (2)若平均每趟快递车辆每分钟的净收益为)若平均每趟快递车辆每分钟的净收益为 6 ( )7920 ( )80 p t q t t (单位:元单位:元),问,问 当发车时间间隔当发车时间间隔t为多少时,平均每趟

35、快递车辆每为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收分钟的净收益最大?并求出最大净收 益益. 【答案】【答案】 (1)4t ; (2)发车时间间隔为 7分钟时,净收益最大为 280(元). 【解析】【解析】 (1)根据题意分915t 和49t 时,分别解( )1500p t ,再结合tN 即可得答案; 第 17 页 共 19 页 (2)由题意可得 4410 901540,49, ( ) 2880 80,915, tttN t q t ttN t ,再结合基本不等式 求最值即可得答案. 【详解】 (1)当915t 时,1800 1500,不满足题意,舍去. 当49t 时, 2

36、1800 15(9)1500t,即 2 18610tt . 解得 92 5t (舍)或t92 5, 49t ,Nt.4t . 发车时间间隔为 4 分钟. (2)由题意可得 4410 901540,49, ( ) 2880 80,915, tttN t q t ttN t 当49t ,7t 时,2 90 44101540280q (元) 当915t ,9t 时, 2880 80240 9 q (元) 发车时间间隔为 7 分钟时.净收益最大为 280(元). 【点睛】 本题考查实际应用问题, 考查数学建模思维和数学知识解决实际问题的能力, 是中档题. 22已知已知 f x g x分别是定义在分别是

37、定义在R上的奇函数和偶函数,满足上的奇函数和偶函数,满足 ( )( ) x f xg xa, 0a且且1a , 1 (1)(1) 2 fg . (1)求实数)求实数a的值及的值及 f x和和 g x的表达式;的表达式; (2)若关于)若关于x的方程的方程| ( )| (2 )3f xgx 在区间在区间 1,1 内恰有两个不等实数根,求内恰有两个不等实数根,求 常数常数的取值范围的取值范围. 【答案】【答案】 (1)2a, 22 ( ) 2 xx f x , 22 ( ) 2 xx g x ; (2) 15 , 8 . 【解析】【解析】(1) 令1x根据函数的奇偶性得到 1 (1)(1)fga,

38、 又 1 ( 1 )( 1 ) 2 fg , 即可求出参数a的值,从而得到( )( )2xf xg x,再令xx,得到方程组,即可求 出函数的解析式; 第 18 页 共 19 页 (2)依题意即方程 22 2222 3 22 xxxx 在区间 1,1 内恰有两个不等实根. 令 22 2 xx t ,将原方程转化为 2 213tt ,根据函数的奇偶性及单调性可将 问题转化为方程 2 3 21t t 在区间 3 0, 4 内有唯一实根,最后根据函数的单调性求 出参数的取值范围; 【详解】 解: (1)由已知( )( ) x f xg xa,xR, 以1代x,得 1 ( 1)( 1)fga, 因为

39、f x是奇函数, g x是偶函数, 所以 1 (1)(1)fga, 又因为 1 (1)(1) 2 fg ,所以 1 1 2 a, 2a, 由已知( )( )2xf xg x,xR, 以x代x,得()()2 x fxgx , 因为 f x是奇函数, g x是偶函数, 所以( )( )2 x f xg x , 联立可得 22 ( ) 2 xx f x , 22 ( ) 2 xx g x ,xR, (2)依题意即方程 22 2222 3 22 xxxx 在区间 1,1 内恰有两个不等实根. 显然0 x不是该方程的根, 所以令 22 (0 | 1) 2 xx tx , 由 2 2 2 222 4 xx

40、 t 得 22 2 22 21 2 xx t , 则原方程可变形为 2 213tt , 第 19 页 共 19 页 易知函数 t x为偶函数,且在区间0,1内单调递增,所以 3 0, 4 t , 且题意转化为方程 2 3 21t t 在区间 3 0, 4 内有唯一实根. 易知 2 3 ( )21h tt t 在区间 3 0, 4 内单调递减, 又0t 时,( )h t , 所以 2 4315 321 348 , (此时每一个 15 8 ,在区间 3 0, 4 内有且仅有一个t值与之对应) 的取值范围是 15 , 8 . 【点睛】 本题考查函数的奇偶性的应用,函数方程思想,转化化归思想,属于中档题.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 考试试卷 >
版权提示 | 免责声明

1,本文(2019-2020学年湖北省部分重点中学高一下学期摸底考试数学试题(解析版).doc)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|