七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx

上传人(卖家):永遠守護你 文档编号:1074773 上传时间:2021-02-05 格式:PPTX 页数:26 大小:1.75MB
下载 相关 举报
七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx_第1页
第1页 / 共26页
七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx_第2页
第2页 / 共26页
七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx_第3页
第3页 / 共26页
七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx_第4页
第4页 / 共26页
七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、5.2 5.2 平平行线及其判定行线及其判定 5.2.2 5.2.2 平平行线的行线的判定判定( (第第2 2课时课时) ) 人教版人教版 数学数学 七年级七年级 下册下册 枕木枕木 铁 轨 铁 轨 在在铺设铁轨时,两条直轨必须是互相平行的,如图:已铺设铁轨时,两条直轨必须是互相平行的,如图:已 经知道经知道,2是直角,那么再度量图中哪个角,就可以判定是直角,那么再度量图中哪个角,就可以判定 两条直轨是否平行,为什么?两条直轨是否平行,为什么? 导入新知导入新知 2 1. 进一步掌握平行线的判定方法,并会运用进一步掌握平行线的判定方法,并会运用平平 行线的判定行线的判定解决问题解决问题. 2.

2、 掌握掌握垂直于垂直于同一条直线的两条直线互相平行同一条直线的两条直线互相平行. 素养目标素养目标 3. 经历例题的分析过程,从中体会转化的思想和经历例题的分析过程,从中体会转化的思想和 分分析问题的方法,进一步培养析问题的方法,进一步培养推理能力推理能力. 例例1 如如图,直线图,直线EF与与ABC的一边的一边BA相相交于交于D, B+ADE=180,EF与与BC平行吗?平行吗? 为什么?为什么? A B E F D C 解解: EF/BC. 理由如下:理由如下: B+ 1=180( ), 已知已知 1= 2( ), 对顶角相等对顶角相等 B+ 2=180( ). 等量代换等量代换 EFBC

3、( ). . 同旁内角互补,两直线平行同旁内角互补,两直线平行 1 2 探究新知探究新知 知识点 1 平行线判定方法的灵活应用平行线判定方法的灵活应用 如图如图所示所示,直线,直线a,b都与直线都与直线c相交,给出的下列条件相交,给出的下列条件: 17;35;18180;36. 其中能判断其中能判断ab的是的是( )( ) A. B. C. D. D 巩固练习巩固练习 b 1 4 a c 5 8 7 6 3 2 例例2 已已知:如图,知:如图,ABC、CDE都是直线都是直线, 且且1=2,1=C, 求证:求证:ACFD. 1 = 2, 1 = C (已知(已知), , 2=C (等量代换(等量

4、代换). . ACFD (同位角相等,两直线平行同位角相等,两直线平行). . F E B C D A 2 1 证明证明: 探究新知探究新知 如如图图, ,12, ,则下列结论正确的是(则下列结论正确的是( ) A. AD/BC B. AB/CD C. AD/EF D. EF/BC C 巩固练习巩固练习 A D E F C B 解解: ABCD . .理由如下:理由如下: AC平分平分BAD, 1=3 . 1=2, 2和和3是内错角,是内错角, ABCD(内错角相等,两直线平行内错角相等,两直线平行). . 例例3 已知:如图,四边形已知:如图,四边形ABCD中,中,AC平分平分BAD,1=2

5、, AB与与CD平行吗?为什么?平行吗?为什么? 3 2 1 D C BA 探究新知探究新知 2=3 . 如如图,图,12,能判断,能判断ABDF吗?为什么?吗?为什么? F D C A B E 1 2 解解:不能不能 答答:添加添加CBDEDB 内错角相等,两直线平内错角相等,两直线平行行. . 若不能判断若不能判断ABDF,你认为还需要再添加的一个条件是什,你认为还需要再添加的一个条件是什 么呢?写出这个条件,并说明你的理由么呢?写出这个条件,并说明你的理由. . 巩固练习巩固练习 在在同一平面内,两条直线垂直于同一条直线同一平面内,两条直线垂直于同一条直线,这,这两条两条 直线平行吗?为

6、什么?直线平行吗?为什么? a b c ba,ca bc ? 猜想猜想:垂直于同一条直线的两条直线平行垂直于同一条直线的两条直线平行. . 知识点 2 探究新知探究新知 在同一平面内,垂直于同一直线的两直线平行在同一平面内,垂直于同一直线的两直线平行 在同一平面内,在同一平面内,ba,ca,试说明:试说明:bc. . a b c 1 2 ba ,c a (已知(已知), , bc ( (同位角相等,两直线平行同位角相等,两直线平行).). 1= 2 = 90 ( (垂直的定义垂直的定义).). 解法解法1:如图,如图, 探究新知探究新知 ba,ca( (已知已知),), 1=2=90( (垂直

7、定义垂直定义).). bc( (内错角相等,两直线平行内错角相等,两直线平行).). a b c 1 2 解法解法2:如图,如图, 在同一平面内,在同一平面内,ba,ca,试说明:试说明:bc. . 探究新知探究新知 ba,ca( (已知已知),), 1=2=90( (垂直定义垂直定义).). 1+2=180. bc( (同旁内角互补,两直线平行同旁内角互补,两直线平行).). a b c 1 2 解法解法3:如图,如图, 在同一平面内,在同一平面内,ba,ca,试说明:试说明:bc. . 探究新知探究新知 几几何语言:何语言: ba,ca( (已知已知) ), bc( (同一平面内,垂直于同

8、一条直同一平面内,垂直于同一条直线线 的的两两条直条直线线平行平行).). a b c 1 2 探究新知探究新知 同一平面内,同一平面内,垂直于同一条直垂直于同一条直线线的的两条直线两条直线平行平行. . 例例 如如图,为了说明示意图中的平安大街与长安街是互相平行的,图,为了说明示意图中的平安大街与长安街是互相平行的, 在地图上量得在地图上量得1=90,你能通过度量图中已标出的其他的角来,你能通过度量图中已标出的其他的角来 验证这个结论吗?说出你的理由验证这个结论吗?说出你的理由. . 解:解:方法方法1:测出测出3=90,理由是理由是同位角相等,同位角相等, 两直线平行两直线平行. . 方法

9、方法2:测出测出2=90,理由是理由是同旁内角互补,两同旁内角互补,两 直线平行直线平行. . 方法方法3:测出测出5=90,理由是理由是内错角相等,两直线平行内错角相等,两直线平行. . 方法方法4:测出测出2,3,4,5中任意一个角为中任意一个角为90, 理由是理由是同一平面内,垂直于同一直线的两直线平行同一平面内,垂直于同一直线的两直线平行. . 探究新知探究新知 素养考点素养考点 1 平行线判定方法平行线判定方法的应用的应用 如图如图所示所示,木工师傅在一块木板上画两条平行线,方法是,木工师傅在一块木板上画两条平行线,方法是: 用角尺画木板边缘的两条垂线用角尺画木板边缘的两条垂线,这样

10、画的理由有下列这样画的理由有下列4种种说法说法: 其中正确的是其中正确的是( )( ) 同位角相等,两直线平行;内错角相等,两直线平行同位角相等,两直线平行;内错角相等,两直线平行; 同旁内角互补,两直线平行;同旁内角互补,两直线平行;平面内垂直于同一直线的平面内垂直于同一直线的 两条直线平行两条直线平行. . A. B. C. D. C 巩固练习巩固练习 如图如图,1120,要使要使ab,则则2的大小是的大小是( ) A60 B 80 C100 D 120 D b 1 2 a l 连接中考连接中考 1. 如图如图所示所示,在下列条件中:,在下列条件中:12;BAD BCD;ABCADC且且3

11、4;BADABC 180,能判定,能判定ABCD的有的有 ( )( ) A. 3个个 B. 2个个 C. 1个个 D. 0个个 C 课堂检测课堂检测 基 础 巩 固 题基 础 巩 固 题 2. 如图如图所示所示,下列条件:,下列条件:12;A4;1 4;A3180;CBDE,其中能判定其中能判定 ABDF的有的有( ( ) ) A. 2个个 B. 3个个 C. 4个个 D. 5个个 B 课堂检测课堂检测 3. 如图如图所示所示,已知,已知A60,下列条件能判定,下列条件能判定ABCD的是的是 ( )( ) A. C60 B. E60 C. AFD60 D. AFC60 D 课堂检测课堂检测 4

12、.如图如图, , B=C, B+D=180, 那么那么BC平行平行DE吗?为什么?吗?为什么? A B C D E 解解:BCDE. 理由如下:理由如下: B=C ( ), , 已知已知 B+ D=180( ), 已知已知 C+ D=180( ). 等量代换等量代换 BCDE( ). . 同旁内角互补,两直线平行同旁内角互补,两直线平行 课堂检测课堂检测 1=C (已知已知), , MNBC (内错角相等,两直线平行内错角相等,两直线平行). . 2=B (已知已知), EFBC (同位角相等,两直线平行同位角相等,两直线平行). . MNEF ( ). . 证明证明: F E M N A 2

13、 1 B C 5.已知:如图,已知:如图,1=C,2=B, 求求证:证:MNEF. . 平行于同一直线的两条直线平行平行于同一直线的两条直线平行 课堂检测课堂检测 如图如图所示所示,已知,已知BE、EC分别平分分别平分ABC,BCD,且,且1与与 2互余,试说明互余,试说明ABDC. . 解:解:1与与2互余,互余,1290. BE,EC分别平分分别平分ABC,BCD, ABC21,BCD22. ABCBCD 21222(12) 180. ABDC. 能 力 提 升 题能 力 提 升 题 课堂检测课堂检测 如如图,图,MFNF于于F,MF交交AB于点于点E,NF交交CD于点于点G,1 140,

14、250,试判断试判断AB和和CD的位置关系,并说明理由的位置关系,并说明理由 解解: ABCD, 过过点点F向左作向左作FQ,使,使MFQ250, 则则NFQMFNMFQ 905040, ABFQ. 1NFQ180, CDFQ, Q 拓 广 探 索 题拓 广 探 索 题 课堂检测课堂检测 理由如下:理由如下: ABCD. 又又1140, 判定两条直线是否平行的判定两条直线是否平行的方法方法有:有: 1.平平行线的行线的定义定义. . 2.如如果两条直线都与果两条直线都与第三条直线平行第三条直线平行, 那么那么这两条直线也互相平行这两条直线也互相平行. . 3.平行线的平行线的判判定方法定方法: (1)同位角同位角相等相等, , 两直线平行两直线平行. . (2)内错角内错角相等相等, , 两直线平行两直线平行. . (3)同旁内角)同旁内角互补互补, , 两直线平行两直线平行. . 4.如果两条直线都与第三条直线如果两条直线都与第三条直线垂直垂直, 那么那么这两条直线也互相平行这两条直线也互相平行. . 课堂小结课堂小结 课后作业课后作业 作业 内容 教材作业 从课后习题中选取从课后习题中选取 自主安排 配套练习册练习配套练习册练习

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 七年级下册
版权提示 | 免责声明

1,本文(七年级下册数学人教版课件5-2-2 平行线的判定(第2课时).pptx)为本站会员(永遠守護你)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|